Rice Notes July, 2022

> Mark Your Calendar!

University of California

Agriculture and Natural Resources Cooperative Extension

In This Issue

- 2022 Rice Field • Day!
- Challenges and • **Opportunities** for US Organic Rice

• Herbicide Susceptibility Survey of Watergras (Echinoch spp.) in California

The annual Rice Field Day will be Wednesday, August 31, 2022, at the Rice Experiment Station (RES), Biggs, California. We cordially invite you and your associates to join us for this event. The purpose of the Rice Field Day is to give rice growers and others an opportunity to observe and discuss research in progress at RES. Rice Field Day is sponsored by the California Cooperative Rice Research Foundation (CCRRF) and University of California (UC). We also seek and receive support from many agricultural businesses and are planning a rice equipment vendor display. Following is a brief outline of the Rice Field Day program.

RICE FIELD DAY Wednesday, August 31, 2022 Rice Experiment, 955 Butte City Highway, Biggs, CA

Watergrass (Echinochloa	7:30 - 8:30 a.m.	REGISTRATION AND POSTER VIEWING	
spp.) in California Rice	8:30 - 9:15 a.m.	GENERAL SESSION CCRRE Annual Membership Meeting	
Cumorniu Rice		 Rice Research Trust Report 	
• Germination of stored seed		California Rice Industry Award	
	9:30 - Noon	FIELD TOURS OF RICE RESEARCH	
Weedy Rice		Variety Improvement	
Scouting and		Disease Resistance	
Reporting 2022		• Insects and Control	
		• Weeds and Control	
	Noon	LUNCHEON CONCLUDES PROGRAM	
	Lunch will be serve lawns under the car	ed in the New Research Building with seating at the tables on the nopies	
Whitney Brim-DeForest UCCE Farm Advisor Sutter, Yuba, Sacramento and Placer Counties	The program will begin at 8:30 a.m. with a General Session that serves as the Annual CCRRF Membership Meeting. Posters and demonstrations will be in place during registration until after lunch. Field tours of research will emphasize progress in rice variety improvement, disease, insect, and weed control. The program will conclude at noon with a lunch that includes rice.		
	We hope to see you August 31st. The RES is located at 955 Butte City Highway (Hwy. 162), approximately two- and one-half miles west of Highway 99 north of Biggs, California.		

Cooperative Extension Sutter-Yuba Counties

142A Garden Highway, Yuba City, CA 95991-5512 Office (530) 822-7515 Fax (530) 673-5368 http://cesutter.ucanr.edu/

Challenges and Opportunities for US Organic Rice

Luis Espino, UCCE Rice Advisor

The USDA's Organic Research and Extension Institute is funding a three-year project to study the challenges and opportunities of organic rice production in the US. The study will focus on the production and marketing of organic rice in California, Texas, and Arkansas.

Currently, US consumer demand for organic rice exceeds domestic supply, leading to significant import competition. The project's goal is to facilitate the growth of organic rice production in the US and foster the growth of domestic markets. To achieve this, focus groups with growers and consumers will be conducted.

In California, UCCE would like to invite organic growers to participate in a meeting to develop a "representative organic farm" model. This information will be used to:

- Assist growers make sound financial decisions and identify production opportunities
- Assist financial institutions asses the viability of organic rice farms
- Develop better crop insurance policies
- Help policymakers to develop policies that favor the US organic rice market

The meeting will be conducted in mid-August. Invitations will be made soon, but if you are interested in participating contact Luis Espino at laespino@ucanr.edu or 530-635-6234.

Herbicide Susceptibility Survey of Watergrass (Echinochloa spp.) in California Rice

Whitney Brim-DeForest, Rice and Wild Rice Advisor Taiyu Guan, Represented Assistant Specialist UCCE, Sutter-Yuba Counties Troy Clark, Rice Junior Specialist, UCCE, Butte County

Introduction

In California rice, herbicide resistance has been documented in Echinochloa spp. since the early 2000's. Recent reports of uncontrolled grasses, as well as possible new species or biotypes have precipitated renewed research on this genus. Sixty-four watergrass samples were collected from a survey conducted in 2020, with grower and PCA-submitted samples from across the Sacramento Valley, as well as samples collected from University of California and Rice Experiment Station fields. Those samples were representative of all the watergrass species/biotypes: late watergrass, junglerice, barnyardgrass, and the new biotype/species. This experiment was a follow-up to our 2018 screening of watergrass (CAPCA Adviser, 2021).

The overall objective of this study was to determine the distribution and status of resistance to currentlyregistered herbicides in these species (cyhalofop, propanil, bispyribac-sodium, penoxsulam, benzobicyclon+halosulfuron, clomazone, and thiobencarb).

Methods

In August and September of 2020, 64 watergrass samples were collected from rice fields across the ricegrowing region of California (Fig. 1). The samples were representative of the Echinochloa spp. present in California rice, but were likely resistant, as they were self-reported by growers and PCAs: late watergrass (Echinochloa phyllopogon), junglerice (E. colona), barnyardgrass (E. crus-galli), and a currently unknown new biotype which is being characterized in a complementary study (Table 1). The overall objective was to determine the distribution and status of resistance to currently-registered herbicides in these species (cyhalofop, propanil, bispyribac-sodium, penoxsulam, benzobicyclon+halosulfuron, clomazone, and thiobencarb). Two known susceptible controls of late watergrass (E. phyllopogon) were added to the screenings as controls.

Figure 1. Distribution of Echinochloa spp. samples collected in August and September 2020 from California rice fields. ID = identification

Screenings took place at the Rice Experiment Station greenhouse in Biggs, CA, in the summer and fall of 2021. All formulations were tested at the 1.5 leaf stage of watergrass. Dormancy was broken for the watergrass by wet-chilling in the fridge for approximately two weeks before planting. Seeds were pregerminated in the incubator. Pots were seeded and then thinned down to 4 plants per pot.

All foliar-applied formulations (cyhalofop, propanil, and bispyribac-sodium) were applied with the labelrecommended surfactants. Applications for into-the-water herbicides (granular formulations of penoxsulam, benzobicyclon+halosulfuron, clomazone, and thiobencarb) were made onto the water surface of bins that were flooded to 10 cm above the soil surface of the pots (where the watergrass was planted). All liquid herbicide treatments were applied with a cabinet track sprayer with an 8001-EVS nozzle delivering 40 gallons of spray solution per acre (at a pressure of approximately 20 psi). A flood was applied at 10 cm above the soil surface 48 hrs after the foliar applications. All herbicides were applied at standard field rates for California rice, though not at the maximum label rate for all herbicides (Table 2).

At 14 days after treatment, the number of living plants per pot was counted, and fresh biomass was measured (per pot) by cutting plants at the soil surface and taking the weight (per pot). Dry biomass was measured after drying the fresh weight samples down to a constant weight. Samples were classified as resistant to an herbicide if the average percent (%) dry weight control was less than that of the susceptible controls.

Table 1. Watergrass (Echinochloa spp.) samples were collected across the California rice-growing region in 2020. The samples were sorted by the seed description and preliminarily identified to species/biotype. No. = Number

Description	Identification	No. of Samples	Percentage (%)
Small seeds, long awns	New biotype (<i>Echinochloa</i> spp.)	22	34.4
Extra small seeds, no awns	Junglerice (<i>E. colona</i>)	2	3.1
Small seeds, variable awns	Barnyardgrass (E. crus-galli)	31	48.4
Large seeds, no awns	Late watergrass (<i>E. phyllopogon</i>)	9	14.1

Table 2. Herbicides and rates utilized for the 2021 watergrass screening. Rates are in grams of active ingredient (a.i.) per hectare and are standard field rates for California rice growers with susceptible Echinochloa spp. biotypes.

Active Ingredient	Rate
clomazone	-1 673 g/ha
thiobencarb	-1 3918 g/ha
benzobicyclon+halosulfuron	-1 306 g/ha
penoxsulam	-1 40 g/ha
cyhalofop	-1 263 g/ha
bispyribac-sodium	-1 32 g/ha
propanil	-1 6726 g/ha

Results

Out of the barnyardgrass samples (31), 23 were resistant to cyhalofop (CY), 3 were resistant to propanil (PR), and 26 were resistant to bispyribac-sodium (BS). Out of the late watergrass samples (9), there were 9 CY-resistant, 5 PR-resistant, and 9 BS-resistant. For the new unknown biotype samples (22), there were 17 CY-resistant, 3 PR-resistant, and 20 BS-resistant. For the granular formulations, barnyardgrass (31 samples) had 27 that were thiobencarb resistant (TH), 24 that were benzobicyclon+halosulfuron resistant (BH), 17 that

PRACTICAL CONNECTED TRUSTED

were clomazone resistant (CL), and 26 that were penoxsulam resistant (PE). Out of the late watergrass samples (9), 9 were TH-resistant, 9 were BH-resistant, 6 were CL-resistant, and 9 were PE-resistant. For the new unknown biotype samples (22), there were 20 TH-resistant, 18 BH-resistant, 11 CL-resistant, and 20 PE-resistant.

Table 3. Percent of samples resistant (R) to foliar-applied herbicides (cyhalofop, propanil, and bispyribacsodium), by species or biotype, in comparison to two susceptible late watergrass (Echinochloa phyllopogon) populations.

		Samples (%	⁄0)
Identification	cyhalofop (R)	propanil (R)	bispyribac-sodium (R)
Barnyardgrass (E. crus-galli)	74	10	84
Junglerice (E. colona)	0	50	50
Late Watergrass (<i>E. phyllopogon</i>) New Biotype (<i>Echinochlog</i>	100	56	100
spp.)	77	14	91
Total	77	19	88

Table 4. Percent of samples resistant (R) to granular formulated herbicides (thiobencarb, benzobicyclon+halosulfuron, clomazone, and penoxsulam), by species or biotype, in comparison to two susceptible late watergrass (Echinochloa phyllopogon) populations.

	Samples (%)			
Identification	thiobencarb (R)	benzobicyclon+ halosulfuron (R)	clomazone (R)	penoxsulam (R)
Barnyardgrass (<i>E. crus-galli</i>)	87	77	55	84
Junglerice (E. colona)	0	50	0	50
Late Watergrass (<i>E. phyllopogon</i>)	100	100	67	100
(Echinochloa spp.)	91	82	50	91
Total	88	81	53	88

The majority of the samples of all species are resistant to all of the tested herbicides, with only propanil and clomazone showing control of approximately 50% (or more) of the samples (Tables 3 and 4). Late watergrass is widely resistant to all of the herbicides tested, with only propanil showing some degree of control in roughly 50% of the samples. Surprisingly, 100% of samples tested were resistant to thiobencarb, benzobicyclon+halosulfuron, cyhalofop, bispyribac-sodium, and penoxsulam.

The new biotype is best controlled with clomazone (50% of samples) or propanil (76% of samples), while a smaller proportion of samples were controlled by the other herbicides tested. Barnyardgrass is best controlled by propanil (90% of samples), and clomazone (45% of samples).

Although the new biotype shows widespread resistance, its impact on yields is likely explained by more than just herbicide resistance and is likely due to its competitive ability as well.

Conclusions

The implications of this study reflect anecdotal evidence relayed by growers. Echinochloa spp. are becoming increasingly difficult to manage using our currently registered herbicides. For growers, this means it is increasingly difficult to plan an effective program that both controls grasses and prevents further selection for resistance. Aside from rotations with the above-utilized

herbicides, some other alternative management strategies include: deep water, utilizing a stale seedbed, and rotating to a dry-seeded or drill-seeded system.

Deep Water:

Maintaining a deep flood (of at least 4–6 inches) can suppress some grass emergence. Deeper water will provide more suppression. Deep water also improves herbicide efficacy for granular herbicide applications, and the deep water may also improve efficacy of pre-emergent herbicides. Keeping the water on the field as long as possible will improve control. Watergrass typically emerges in the first 30 days after water is put on the field, so longer flood duration is better.

Stale Seedbed:

A stale seedbed has been shown to provide good control of watergrass in heavily infested fields. To implement a stale seedbed, prepare the field as normal (in spring). The field can be tilled or untilled. If untilled, please keep in mind that watergrass seeds typically only emerge from the top 6 cm (3–4 inches) of soil.

Once the seedbed is prepared, flood the field until water is 3 to 4 inches deep, then turn off water and let it sink into the soil. This will increase watergrass germination. Roughly 1 to 2 weeks later, spray a nonselective herbicide (make sure the field is fully drained to ensure coverage). Tillage can also be utilized in place of an herbicide, but avoid deep tillage, as it will bring up additional grass seeds. Timing of the herbicide application or tillage will depend on temperature. Warmer temperatures cause faster emergence of grass. Two weeks should be more than enough time to bring up most of the grass population that will be germinable (able-to-germinate), regardless of temperature.

If not planting rice, this process (flushing/flooding, followed by tillage or herbicide application) can be repeated multiple times throughout the season. If planting rice, flood up the field after the application of the nonselective herbicide (follow label for instructions on flood timing).

Rotation to Drill- or Dry-Seeded System:

Drill-seeding or dry-seeding rice allows for the use of pendimethalin, which is a different mode of action from all other currently-registered rice herbicides. Depending on the actual product used, pendimethalin may be best used in a drill-seeded system, due to the possible injury to emerging rice plants. Or it can be used in a

dry-seeded system, where seed is flown on instead of drilled. For more information on application methodology, refer to the product herbicide label.

Germination of stored seed

Luis Espino, UCCE Rice Advisor Timothy Blank, CA Crop Improvement Association Whitney Brim-DeForest, UCCE Rice and Wild Rice Advisor

The drought has significantly reduced the acreage of rice planted in California, including rice seed fields. This means that next year the industry may face a reduction in the supply of fresh seed, that is, seed that was planted and harvested in 2022 and that would be offered to growers in 2023.

Typically, rice seed producers only sell seed produced the previous year, and anything left over is sent to the mill. Storing rice seed for a year is infrequent and usually limited to research material, which is often put in cold storage to extend viability for years, and specialty varieties. However, because of the reduction in planted acres, some of the unused 2021 seed will be stored through 2022 to be used in 2023 to make up for the reduction in seed field acres.

Storing rice seed under ambient conditions can result in significant decreases in germination. Unfortunately, there is not a lot of data about the effect of seed storage under California conditions on seed germination. To help the industry have a better understanding of what happens to stored seed, we established a field trial this year at the Rice Experiment Station (RES) in Biggs to compare the germination and establishment of seed produced in 2020 and stored through 2021 with seed produced in 2021

Variety - age	Year Produced	General storage conditions
M-206 - old	2020	Shop building, ambient temperature
M-206 - new	2021	Bin, ambient temperature
M-211 - old	2020	Shop building, ambient temperature
M-211 - new	2021	Bin, ambient temperature
CH-202 - old	2020	Bin, ambient temperature
CH-202 - new	2021	Bin, ambient temperature

We also collected data from our variety trials and a breeder seed field where variety S-202 was planted with seed produced in 2020. See the table below for details of how that seed was stored.

Variety - age	Year Produced	General storage conditions
S-202 - old	2020	Shop building, ambient temperature
S-202 - cold	2020	Cold storage

In the Biggs trial, there was really no stand differences between the seed produced in 2021 (new) and seed that was produced in 2020 and stored through 2021 (old).

Error Bars: +/- 1 SE

For variety S-202, the stand was good for seed that was put in cold storage through 2021 but poor for seed that was just stored through 2021 in a shop at ambient temperature.

Many factors can affect the germination of stored seed. For example, seed that is stored at high temperature and moisture content is known to reduce germination. There might also be an effect of the variety, with some varieties being able to keep their germination potential than others.

We have sent samples of the seeds used to obtain the information above to a CDFA approved lab to conduct a germination test. Most likely, the germination test results will mirror field observations. We will update the industry once we have that information and provide some guidelines as to how to adjust seeding rates if seed with low germination rates is used.

Weedy Rice Scouting and Reporting 2022

Whitney Brim-DeForest, UCCE Rice Advisor

It is getting close to the time we need to scout for weedy rice. Our team will be scouting known infested fields that are planted to rice this year. Troy Clark, our Rice Junior Specialist, will be starting in the next few weeks, and will be reaching out to growers and PCA's. Like always, the more eyes on the ground we have, the better! So we are asking for everyone to please scout their own fields to look for suspicious plants.

For timing of scouting, the best time to start, is if you have applied all herbicides to control grasses, and you are still seeing what appear to be skips or misses in grass control. At that point, it is a good idea to go out and check the plants. If they do not have a ligule and auricle, then they are a grass species (not weedy rice) (Figure 1). If they have a ligule and auricle, then they are either rice, or sprangletop.

Figure 1. Ligule and auricle on a rice plant. Watergrass species do not have ligules and auricles.

Follow this key to help make the determination:

- 1) Does the plant have a ligule or auricle?
 - a. If yes:
 - i. Does it have a white midvein down the leaf? (Figure 2)
 - 1. If yes: \rightarrow Sprangletop
 - 2. If no: \rightarrow Rice
 - b. If no:
 - i. \rightarrow Watergrass

- 2) If plant is rice (ligule and auricle), is it weedy?
- 3) Are the leaves smooth? (not rough)?
 - a. If yes:
 - i. \rightarrow Likely a variety
 - b. If no:
 - i. \rightarrow Potentially weedy rice (call Farm Advisor to double-check)

Figure 2. White midvein on sprangletop leaf.

So far this season, we have had just a couple of calls about weedy rice (likely related to the reduced overall acreage), and thus far, all have been varietal contaminants. Thank you to everyone that has had us out to the field to check plants. The more vigilant we all are, the better we can tackle this weed.