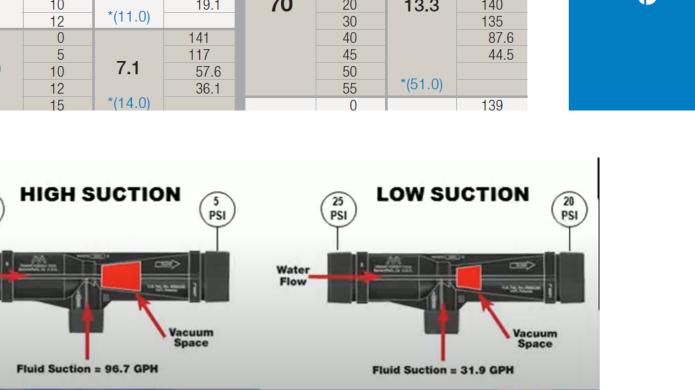
Fertigation with organic fertilizer

Injector types

2. Venturi type "Mazzei"

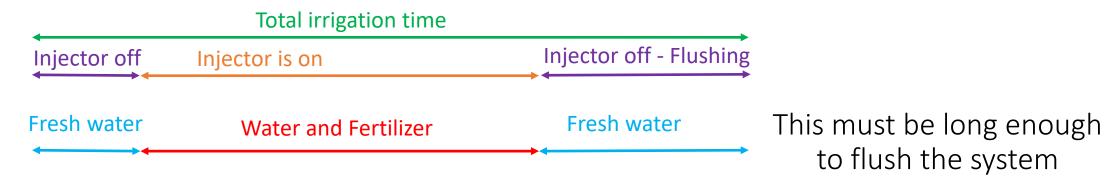
1. Gasoline powered pump

3. Positive displacement pump or proportioner



261[®]

Water Flow


Operating Pressure PSIG		WATER SUCTION		Operating Pressure PSIG		WATER SUCTION	
Injector INLET	Injector OUTLET	Motive Flow GPM	Water Suction GPH	Injector INLET	Injector OUTLET	Motive Flow GPM	Water Suction GPH
	0		78.0	70	0	12.3 *(43.0)	140
_	1		62.5		5		140
5	2	3.6	42.7		10		140
	3		15.5		15		140
	4	*(4.0)			20		138
10	0	5.0	115		30		110
	2		90.7		35		73.3
	5		44.7		40		33.2
	7		19.4		45		
	8	*(7.5)			0	13.3 *(51.0)	141
15	0	6.2	135		5		141
	5		83.1		10		140
	7		58.0		15		140
	10	*(11.0)	19.1		20		140
	12				30		135
20	0	7.1	141		40		87.6
	5		117		45		44.5
	10		57.6		50		
	12		36.1		55		
	15	*(14.0)			0		139

tor Performance Table Suction Capacity

Irrigate with fresh water after injecting fertilizer


You need to measure how long it takes for water to go from your fertilizer injection point to the end of the furthest dripline

You can measure the Electrical Conductivity of water at the end of the dripline. I will increase substantially when fertilizer gets there. You can also measure nitrate.

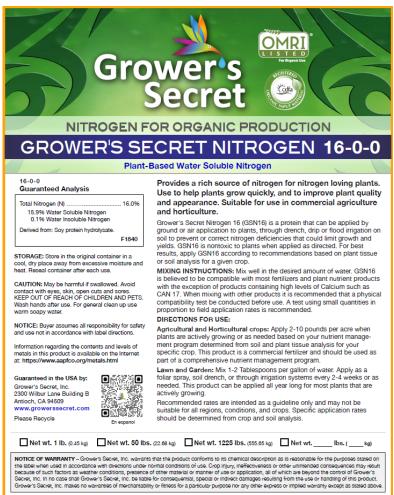
Or you can use food color

Flush laterals, tapes and hoses regularly

Drip hose flushing

Investigate causes of plugging

Dead Palm



Soy hydrolysate products are more soluble...

...but more expensive per lb of N

Percentage of available nitrogen

Fish Emulsion: Agrothrive 2.5%-1.5%-2.5%,

30% available \rightarrow 0.8%

Pelletized chicken manure: 4%-4%-2%,

40% available → 1.6%

Guano 12.5%, 70% available → 8.4%

Feathermeal: 13-0-0, 70% available \rightarrow 9.1%

Nitrogen management in organic systems

GUARANTEED ANALYSIS
Total Nitrogen (N)
2.6% Water Soluble Nitrogen
0.4% Water Insoluble Nitrogen
Available Phosphate (P2O5)
Soluble Potash (K ₂ O)3%
Derived from: Fish Solubles Stabilized with Phosphoric
Acid, Reduced Sugar Molasses, Corn Steep Liquor, Soy Protein
Hydrolysate, Sugar Beet Extract, Sulfate of Potash, and Kelp Extract
Density

- Say you want to apply 10 lbs of N per acre when irrigating a half acre block
- We need to inject 10x0.5= 5 lbs of N
- So we need to inject 5 / 0.03 = 166 lbs of fertilizer
- That correspond to 166 / 9.5 = 17 gallons of fertilizer

- To apply 100 lbs of N/acre of 4-4-2
- You apply 100/0.04 = 2500 lbs = 1.25 tons of fertilizer

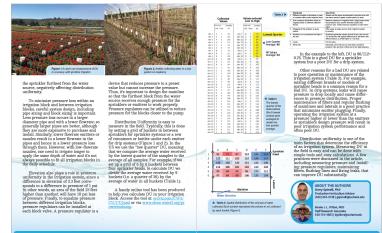
- To apply 100 lbs of N/acre of 13-0-0
- You apply 100/0.13 = 770 lbs = 0.38 tons of fertilizer

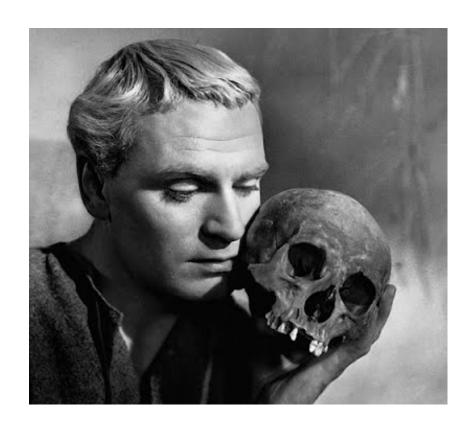
Measure distribution uniformity with a catch can experiment

When fertigating, bad distribution uniformity of water means bad distribution of nitrogen!

Pressure distribution, plugging, leaks, mismatched nozzle/dripper sizes are the main causes of low

distribution uniformity


Make flushing easier



Filters

• Inject before filter or after filter?

Thank you!

Gerardo Spinelli

gspinelli@ucdavis.edu

Office 858 822 7679

Cell 530 304 3738

Please complete the evaluation!

https://surveys.ucanr.edu/survey.cfm?surveynumber=33281

