UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

Arthropod Pest Management in Organic Vegetables

Surendra Dara PhD, DAIT

Cooperative Extension Advisor-Entomology and Biologicals

University of California Cooperative Extension

skdara@ucdavis.edu

@calstrawberries @calveggies

eJournals: ucanr.edu/JEB

strawberriesvegetables

Westbridge Webinar 28 July 2021

Outline

- IPM
- Common vegetable pests
- Common pest management options
- Biopesticides
- Modes of action/mechanisms of infection
- Effective management strategies
- Field examples

Common pests of vegetables

Coleoptera

- Click beetle
- Colorado potato beetle
- Flea beetle
- Pepper weevil
- Spotted cucumber beetle
- Striped cucumber beetle
- Wireworms

Diptera

- Cabbage maggot
- Leafminers
- Seedcorn maggot
- Lygus bug
- Psyllids

Feeding habit: Chewing, boring, rasping/scraping, piercing and sucking, etc.

Aphids

Tomato bug

• Bagrada bug

• False chinch bug

Homoptera

• Whiteflies

- Lepidoptera
- Armyworms
- Budworms • Cutworms
- Diamondback moth
- Earworms
- Fruitworms
- Hornworms
- Imported cabbageworm
- Leafrollers
- Loopers
- Potato tuberworm
- Tomato pinworm

Others

Thrips

Thysanoptera

- Symphylans
- Spotted snake millipedes

- Acarina
- Bulb mites
- Spider mites

Control option: Based on pest biology, feeding behavior/habitat, mode of action of the option, prevention/curative, environmental conditions, and others

Feeding habitat: Surfaces or bored plant tissues (leaves, roots, stems, or fruits), mines, rolls, folds, etc.

Common pest management options

- Host plant resistance
- Sanitation
 - Starting with clean material
 - Managing alternative/weed hosts
 - Removing and destroying infested plants
 - Managing crop residue
- Modification of agronomic practices
 - Planting time, plant density, crop rotation, trap crops, mixed cropping, and others
 - Nutrient and irrigation management
 - Biostimulants to improve crop health and induce resistance
 - Minerals that strengthen plant tissues and impart pest tolerance
- Biological control
 - Insectary plants and other conservation approaches
 - Releasing natural enemies
- Physical or mechanical control
 - Row covers, screens, sticky tapes, reflective material, and others
 - UV light

UC

Common pest management options

- Pesticide applications
 - Botanical pesticides
 - Microbial or microbial metabolite-based pesticides
 - Others including diatomaceous earth, minerals, and fatty acids
- Choice of pesticides
 - Chewing vs. sucking insects; surface feeders vs. borers/miners/rollers; underground vs. aboveground
 - Different kinds of products for different life stages
- Microbial control
 - Application of biopesticides based on bacteria, fungi, nematodes, and viruses
 - Natural infections or fungal epizootics
- Behavioral control
 - Baits/traps
 - Mating disruption

UC CE

Entomopathogens

Mechanisms of infection

Fungal and viral infections

Bagrada bug

Entomophthora planchoniana-Strawberry aphid

Beauveria bassiana

Entomophthora muscae-Spotted-wing drosophila

Source: Tom Mann

Pandora neoaphidis-Green peach aphid

Metarhizium brunneum

NPV-killed beet armyworm

GV-killed geometrid larva

UC CE

Modes of action

	AI	IRAC
	Pyrethrins (Chrysanthemum cinerariaefolium)	3
	Spynosyns (Polysaccharospora spinosa)	5
	Avermectins (Streptomyces avermitilis)	6
{	Spider venom peptide (GS-omega/kappa HXTX-Hv1a peptide) (Australian funnel-web spider)	32
	Azadirachtin (Azadirachta indica)	UN
UC	Botanical extracts/oils	UNE

CE

Mode of Action

- Sodium channel modulators causing hyperexcitation and sometimes nerve block
- Nicotinic acetylcholine receptor allosteric modulators – Site I causing hyperexcitation of the nervous system
- Glutamate-gated chloride channel allosteric modulators causing paralysis
- Nicotinic acetylcholine receptor allosteric modulators – Site II causing hyperexcitation of the nervous system

Unknown/uncertain Insecticide/antifeedant/repellent/IGR

Unknown/uncertain Insecticide/antifeedant/repellent

Effective management strategies

- Integrated pest management
 - Take advantage of all available options
 - Consider additive and synergistic effect of multiple control options
 - Follow IPM principles beyond pest management
- IPM = GAP (Good Agricultural Practices) = CCC (Comprehensive Crop Care)
- Insecticide resistance management
 - Pests develop resistance to all kinds of pesticides
 - Avoid repetitive use of the same control option that has a risk of resistance development
- Balanced approach for both short-term and long-term benefits
- Use of modern technologies that enhance pest control efficacy
- IPM is especially more important in organic crop production

Questions

1. Choice of pesticide sometimes depends on the feeding behavior and habitat of the pest

- A. True
- B. False
- 2. Adopting an IPM strategy is important
- A. As a good agricultural practice
- B. For effective pest management
- C. For insecticide resistance management
- D. For both long-term and short-term benefits
- E. All of the above

Surendra Dara's Profile:

eJournals:

Meeting presentations: Meeting handouts: Strawberry manuals: Spider mite management: Twitter: Facebook: YouTube: Email:

http://ucanr.edu/JEB http://ucanr.edu/pestnews http://ucanr.edu/meetingpresentations http://ucanr.edu/meetinghandouts http://ucanr.edu/strawberrymanual http://ucanr.edu/spidermiteguide @calstrawberries and @calveggies @strawberriesvegetables http://ucanr.edu/SDYouTube skdara@ucdavis.edu