How Companies Select and Develop Harvesters: the Commercial Perspective

> Rachel B. Elkins University of California Cooperative Extension Lakeport, California

Strategy for Developing Mechanical Harvesting of Horticultural Crops: Simultaneous Short –, Medium –, and Long – Term Strategies

> American Society for Horticultural Sciences Annual Conference 2013 Wednesday, July 24, 2013, Palm Desert, California

Overview of presentation

- NOT a technical talk on machine types
- 8 interviews: 6 companies, 1 economic development entity, 1 university ag engineer
- All *passionate* and committed to mechanization of specialty crops
- All with a unique and fascinating story of how they became involved and hope to succeed
- Provided an important personal, and historical, perspective

HAND HARVESTED CROPS – Can it be done?

MAYBE (depends on crop): Difficult, expensive.

Long-term capital cost to grower high, reduces \uparrow incentive. Need BIG labor cost increase, 3 year ROI to customer. Electronics, software, CAD important

FULL MECHANIZATION? Maybe. Platforms a transition to full? MAYBE

BARRIERS: Selectivity, gentleness, *grower "paradigms"* (labor and harvest management/expectations, planting systems)

WHAT IS NEEDED TO SUCCEED?

DEVELOPER: PASSION, PERSISTENCE, SKILL, PATIENCE – AND MONEY!

INDUSTRY: *long term commitment to crop* CA – almonds, walnuts, pistachios, wine grapes compete with fresh fruit.

SUCCESSFUL ENTITIES – Serve multiple but related crops: raisins, pomegranates, olives, wine grapes, citrus, pistachios, cherries (tart), apples, nuts, chili peppers, cucumber (pickles), cherry peppers (jalapeno). Enables R&D cost to be spread out, lowers overall cost.

Types of companies (generational)

- Mechanics/farmers LLCs, family-owned (1st generation)
- Established engineering companies (2nd generation)
- Entrepreneurial 'start-ups" (3rd generation)

- ag

LONG TERM, LIMITING FACTOR: STABLE FUNDING (options)

Days of piecemeal, "do-it-your-self" finance over ("couldn't do it today")

Investors AND customers desire 3-5 year ROI sought; 20-year timelines less feasible

Federal grant funds (SCRI, AFRI)

Commodity groups

Large (private or cooperative)grower entities

Venture capital

KEEP YOUR DAY JOB !

COMMISSION

last resort funds

green leaf robotics

confidential

Field savvy, "Always tinkering" Self-taught Transformed dream

to reality

Impetus: Saw need themselves or expressed by *local* grower(s)

Long term, trial and error, stepwise improvement:

"I didn't know enough to give up"

"Pay as you go"

Self or customerfinanced, no budgets or business plans HAVE A DAY JOB!

1ST GENERATION Ag Mechanic/Farmer/Custom Harvester

Initial success mechanical skill + persistence + luck + timing: *dream becomes reality*

Continued success machine payback \rightarrow new customers \rightarrow reputation \rightarrow market widens, new niches

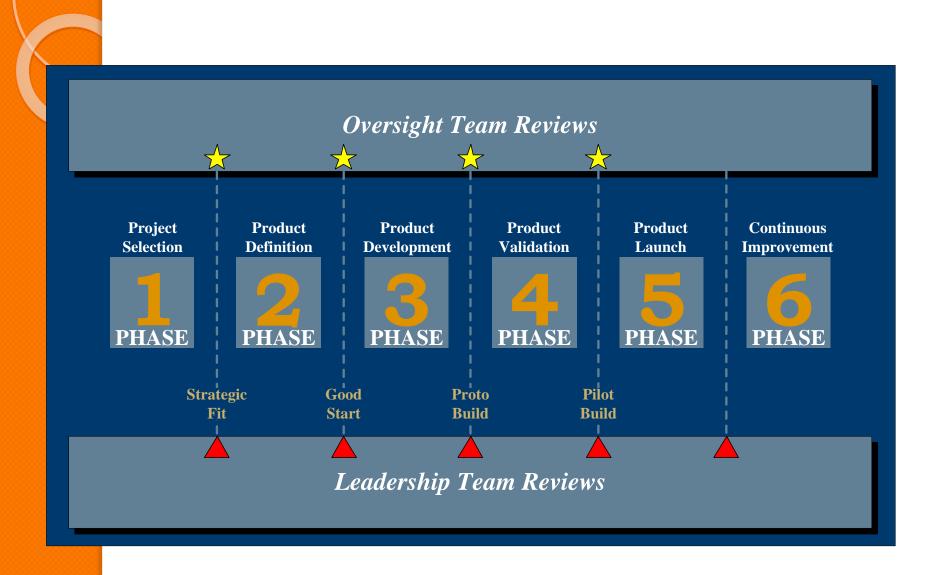
Targets local niche markets initially Grow, "zeros in" (territory, crop types); parts business important

1ST GENERATION Ag Mechanic/Farmer/Custom Harvester

Still family – run mostly <50 employees 10s of units kids educated (see 3rd generation);

branched out to other businesses

Instrumental in driving industry change labor management, breeding, planting stand management



2nd GENERATION Ag Engineering Company "Mom and Pop" start ups grow up (1980s - 2000s)

Often formed from one or more established "mom and pops" Design engineering, production and marketing staff → higher overhead

Local \rightarrow regional \rightarrow national \rightarrow international growth

Multi-commodity, Multi-operation product line 100's of units

2nd GENERATION Ag Engineering Company

FINANCING

Profits from sales, investor, lender, venture, going public Rigorous, multifaceted design \rightarrow Implementation

GROWTH

Parallel market studies, acquisition, partnerships. Where the new generation start ups hope to end up! DEMAND MUST BE ASSURED, CONSISTENT

3rd GENERATION 21st Century Engineering Start Up

Formally and highly educated

May have ag or machine background

Emphasis on business skills

Extensive technology market research

Detailed business and product plans

Technical skills

Engineering, mechanics, Computers (multiple aspects), electronics Material science Robotics

Financing (HARD!)

Mainly venture capital

Requires prior reputation or working prototype

A little perspective.

Rodney Brooks confidential

green leaf robotics

3rd GENERATION 21st Century Engineering Start Up

Faced with shorter term outlook for success (3-5 years) **HOW?** Adapt modern engineering and *electronic* innovations, e.g. aerospace, automotive, defense

Seek consumer-level control simplicity

GOAL: Fill niche market(s), be acquired, or go public **Be a 4**th generation ag engineering company

Why now?

Market conditions

- Growers care
- Architectures accommodate it

technological state-of-the-art and

- Vision components have gotten better and cheaper
- Mechanical components have gotten better and cheaper
- Computation has gotten faster and cheaper

What is the Role of Public Research and Extension?

Cooperators with land-grant, USDA-ARS; gained ideas

Often able to persist longer than researchers

Noted downsizing effects, spending priorities (program funding pressures)

Utilized public-developed technology, ex. Force balanced shaker head

Appreciate "3rd party" objective field evaluation, extension involvement

What is the Role of Public Research and Extension?

Should be "cutting edge", then let industry apply the results ex. shaker head; sound waves?

Ideas need to be simplified

What is mechanically harvested today?

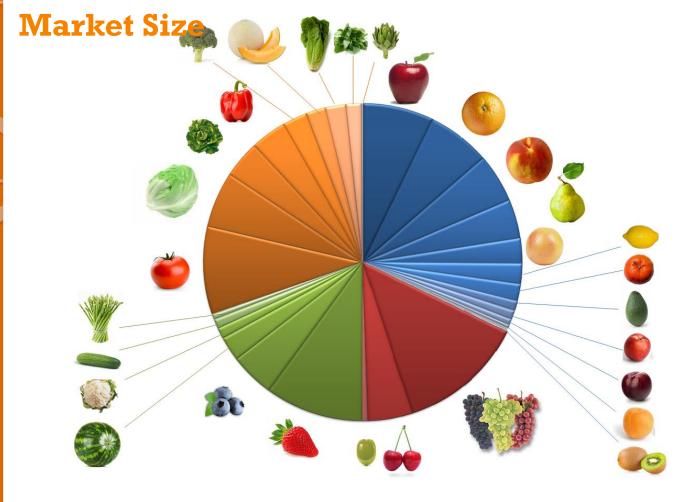


Table 3. U.S. Crops That Widely Use Mechanical (M) or Labor-Aid (L) Harvesting Systems

Fresh-Market Crops		Procesing Crops		
Fruits	Vegetables	Vegetables	Fruits	
Cranberry M Date M Fig M Papaya L Nuts Almond M Chestnut M Hazelnut M Peanut M Pistacio M Walnut M Pecan M	Above Ground: Celery M Hd. Lettuce L Spinach M Sweet Corn M Below Ground: Carrot M Dry Onion M Garlic M Horseradish M Potato M Parsnip M Potato M Radish M Rutabaga M Sweet Potato M Turnip M	Above Ground: Brussel Sprout M Cantaloupe L Celery M Cucumber M Field Squash M Hd. cabbage M Honeydew Melon L Hot pepper M Lima Bean M Muskmelon L Mustard Green M Parsley M Pea M Pumpkin M Rhubarb M Snap Bean M Sweet Corn M Tomato M Below Ground: Beet M Carrot M Potato M	Blackberry M Cult. Blueberry M Wild Blueberry L Grape M Jojoba M Papaya M Pineapple L Plum M Prune M Rasberry M Sweet Cherry M Tart Cherry M	

	domestic (auto alone)	domestic (auto+dens)	global (auto alone)	global (auto+dens)
apples	\$0.8B	\$2B	\$3B	\$8B
top 5 tree fruit	\$2B	\$5B	\$9B	\$23B
all crops	\$8B	\$12B	\$26B	\$42 B

confidential

TIMING IS EVERYTHING!

- Industry
- Growers and labor force

- Engineers and Breeders
- Machine Developer

Acknowledgements

- Susan Barich, Marina Technology Chester (Project 17), Marina, CA <u>http://www.barichbiz.com</u>
- Greg Boese, Boese Harvester Co., Saginaw, MI <u>http://boeseharvester.com</u>
- Phil Brown, DBR Conveyor Concepts, LLC, Conklin, MI <u>http://www.dbrconveyorconceptsllc.com</u>
- John Miles, Dept. of Biological and Agricultural Engineering, University of California, Davis (Emeritus) <u>http:bae.engineering.ucdavis.edu</u>
- Gavin Nielsen, Nielsen Technologies, Chico, CA <u>http://nielsentechnologies.com</u>
- Curt Salisbury, Greenleaf Robotics <u>http://greenleafrobotics.com</u>
- Phil Scott, Ag-Right Enterprises, Madera, CA
- Gary Stich, Oxbo International Corp., Byron, NY <u>http://oxbocorp.com</u>

MANY THANKS!

THANK YOU!

