AUTOMATED WEEDING IN LETTUCE AND TOMATO USING A CROP MARKING SYSTEM

STEVE FENNIMORE,

UNIVERSITY OF CALIFORNIA, DAVIS

Aaria

AIC2020 March 18, 2020 Santa Maria

ACKNOWLEDGMENTS

- David Slaughter
- Mark Siemens
- Laura Tourte
- *****Richard Smith
- Rekha Raja
- HannahJoy
- Kennedy
- Wenhao Su

- USDA NIFA Specialty Crops Research Initiative
- CA Leafy Greens Research Board
- CA Tomato Research Institute

ISSUES WITH ROBOTIC WEEDERS

- Cost and complexity
- The 2-D detection system gets "lost" in heavy weed infestations
- Need better crop/weed differentiation

ACTUATOR – CULTIVATOR KNIFE

ROBOVATOR ON 80 INCH BEDS

HOW TO IMPROVE CROP/WEED DIFFERENTIATION?

- Identify the cropMachine learning
- Mark the crop "crop signaling"
 - Systemic marker
 - Topical markers
 - ✤Plant labels

CRITICAL POINTS

Weed control in vegetables is complex and multiple tools are used

- There are few (near zero) new herbicides for vegetables
- Hand weeding is important, but is not long-term sustainable

New weed technologies besides herbicides are needed for vegetable crops

CROP SIGNALING CONCEPT

• Crop Signaling is a method by which the crop plant can signal its identity to an automated weeding machine.

Three Methods of Crop Signaling were tested:

- 1. Systemic Markers
- 2. Topical Markers
- 3. Plant Labels

CROP SIGNALING CONCEPT

Topical Markers

TOPICAL MARKERS

- Several formulations have been investigated
 - Water based
 - Biodegradable
 - Washes off before maturity
- Topical application is done just prior to planting
- The label is detected by the weeder during cultivation

CROP SIGNALING PROTOTYPE

• Topical Markers

Crop Marking at Planting

Marking Technolo

CROP SIGNALING PROTOTYPE

Crop Marking at Planting

• Plant Labels

CROP SIGNALING RESULTS

Crop Marking at Planting

System

Plant Labels

CROP SIGNAL EVALUATIONS

- *14 trials were conducted during 2016 to 2018
 - ***8** in processing tomato at Davis, CA
 - ♦6 in lettuce at Salinas, CA
- All trials were replicated 4 times and arranged in a RCB design
- Statistical analysis was conducted using R Studio
- Data were weed densities, hand weeding times and crop harvest

DETECTION SYSTEM

Detector – color digital camera Scout scA 1600 Basler Inc. Germany

Lighting system consisted of UV LED

Detection of marked crops was near 100% (Raja et al. 2019)

Topical marker was "Wildfire" theatrical paint

ROBOTIC WEEDER COMPONENTS

Detection system identifies the

crop/weed

Actuator – device that kills weed – cultivator knife

TOMATO

Cultivator	Weeds Time to har after weed cultivation		Yield	
	1,000/A	Hr/A	Tons/A	
Robotic	45.3 a	7.8 a	22.0 a	
Standard	458.1 b	14.9 b	25.1 a	

LETTUCE

Cultivator	Weeds after cultivation	Time to hand weed	Yield	
	1,000/A	Hr/A	Tons/A	
Robotic	72.8 a	16.0 a	20.4 a	
Standard	213.7 b	29.1 b	16.9 a	

CONCLUSIONS

- The robotic weeder removed 90% more weeds in tomato and 66% more weeds in lettuce than the standard cultivator
- The robotic weeder reduced hand weeding times 48% in tomato and 45% in lettuce compared to the standard cultivator
- The robotic weeder did not reduce tomato or lettuce yields compared to the standard cultivator

OWNERSHIP & OPERATING COSTS

Category	Traditional	Steketee IC	Robovator	Signaling			
	\$/A						
Ownership		53	73	67			
Auto cultivation		165	199	190			
Hand weed	161	100	100	88			
Total	161	318	372	345			

Tourte et al. CA Ag in review

SUMMARY

- Topical markers and plant labels resulted in crop recognition >99%
- Weed removal with the plant signaling system was more efficient than standard inter-row cultivation

1. WEED AUTOMATION NEEDS

- Train students in multiple disciplines needed for weed control automation
 - technology, engineering, weed science
- Research needed for high-risk high-gain technologies
 - Lasers
 - Abrasives (sand blasting)
 - Thermal methods (hot oil, serial flaming)
 - High pressure water
 - Crop/weed identification

2. WEED AUTOMATION NEEDS

- Joint ventures between industry and public sector will create opportunities
 - Create new companies and jobs
 - Student internships and real world mentoring
 - Ensure that students are being trained with skills relevant for a workplace with continuously changing technology

