

Wine Faults

Linda F. Bisson Department of Viticulture and Enology University of California, Davis February 27, 2015

The Types of Wine Faults

> Hazes/Cloudiness
> Sediment/Precipitates
> Off-Characters: Taints

Hazes/Cloudiness

Protein
Polysaccharide
Colloidal Instability
Microbial growth

Sediments/Precipitates

Tartrate instability
 Oxidative polymerization
 Microbial growth

Wine Taints

Color
Aroma
Taste

Sources of Taints

> Vineyard
> Unsound fruit
> Fermentation microbes
> Oxidation/reduction reactions
> Spoilage microbes

Taints

- Same off-character may come from different sources (acetaldehyde)
- Some off-characters arise only in specific chemical/microbial environments
- Compound(s) responsible for some taints unknown

Wine Taint Definition

Something that is:

- generally recognized as negative
- native to the cultivar but undesired
- undesired for a specific style
- an odd wine character

Generally Recognized as Negative

- Sulfur volatiles: rotten egg, canned vegetables, onion, garlic, clam, fishy, swampy, natural gas, etc.
- Malolactic off-characters: mousy, fur, rancid, vomit, poo
- Brettanomyces characters: medicinal, Band-Aid, artificial smoke, rancid, putrid/decay, perfume

Native to Cultivar but Undesired

- > Pyrazines/vegetal character
- > Unripe apple
- Passion fruit/sweaty/cat urine
- Smoke + tobacco = ashy
- Single trait dominating wine aroma profile

Undesired for a Specific Style

Too much forward fruit
Too little forward fruit
Too much jam/cooked fruit
Not enough jam/cooked fruit

Odd Wine Characters

> Atypical aging character Plastic/solvent/paint taints > Rose taint > Metallic taints Material other than grape (MOG) taints Insect taints Contaminant plant taints

Timing of Taint Formation

> Upon Crushing/Processing of Fruit
 > During Fermentation
 > During Aging

Taints Arising Upon **Crushing/Processing of Fruit** Originating in Vineyard – MOG-associated Arising early in processing Cluster rot-associated

Aerobic fermentation during delivery of fruit

Taints Arising During Fermentation

From wild microbiota
From *Saccharomyces*

Wild Microbiota Taints

Lactic acid bacteria

- Butter
- Fatty acid/oxidized character
- Acetic acid
- Non-Saccharomyces yeast
 - Acetic acid
 - Ethyl acetate

Classes of Saccharomyces Taints

- Fusel compounds
- Esters
- Sulfur volatiles

Fusel Family

- Alcohols, acids and aldehydes derived from amino acids
- Alcohols are generally the products of yeast metabolism
- Fusel acids and aldehydes more toxic than alcohols
- Redox conditions during aging or bottling can convert fusel compounds into different forms
- Microbial activity (Acetic Acid Bacteria or Brettanomyces) can convert fusel compounds to different forms

Fusel Alcohols and Derivatives

- Below 300 mg/L = fruity and pleasant: peach, apricot
- Above 400 mg/L = pungent, chemical taste and aroma described as oil, oil refinery, plastic manufacturing
- Total produced: varies from less than 100 to greater than 500 mg/L
- Very strain dependent
- Individual compounds typically vary from 10-140 mg/L

Fusel Alcohol Formation Influenced by:

Yeast strain

> Availability of amino acid precursors

- Presence of non-Saccharomyces yeasts
- Increased DAP with low nitrogen juice
- Increased juice solids

Ester Family

- > Also arise from yeast nitrogen metabolism
- Low concentrations: fruity and floral
- > High concentrations: perfume/extracts/solvent
- Can dominate wine aroma profile
- Are lost over time
- Production varies by strain and juice conditions

Positive Wine Characters Associated with Esters

- Fruit
 - Apple
 - Apricot
 - Fig
 - Melon
 - Peach
 - Pear
 - Prune
 - Raspberry
 - Strawberry
- Honey

- Tropical fruit
 - Banana
 - Coconut
 - Mango
 - Pineapple
- Floral
 - Rose
- Butter
- Spice
 - vanilla
- Yeast (bread)

Negative Wine Characteristics Associated with Esters

> Foxy Nail polish Bubble gum/cotton candy > Soapy > Candle wax Perfume Intense fruit Intense floral

In General . . .

- The higher the concentration of the ester the more negative the impression is of the character
- Longer chain esters fall into soapy, perfume range
- Combinations of esters can confer a stronger aroma than the sum of the individual compounds

Sulfur Volatiles Family

Come from:

- S-containing amino acid metabolism
- Vitamin degradation
- S-compounds used in vineyard
- Degradation of cell materials during adaptation

Why Are Sulfur Compounds a Problem?

Low thresholds of detection
 Negatively-associated aromas
 Chemical reactivity
 Difficulty in removal
 Difficulty in masking

The Classic Sulfur Fault Descriptors

- Rotten egg
- Fecal

>

- Rubber/Plastic tubing
- Burnt match
- Burnt molasses
- Burnt rubber
- Rotten vegetable: cauliflower, cabbage, potato,

asparagus, corn

- Onion/Garlic
- Clam/Tide pool
- Butane/Fuel/Chemical

The Sulfur Taints

- Hydrogen sulfide
- Higher sulfides
 - Dimethyl (Diethyl) sulfide
 - Dimethyl disulfide
- Mercaptans
 - Methyl (Ethyl) mercaptan
- Thioesters
 - Methyl (ethyl) thioacetate
- Other S-amino acid metabolites
 - Thioethers
 - Cyclic and heterocyclic compounds

Sources of Sulfur Compounds

Non-biological

- Elemental sulfur
- S-containing pesticides
- Biological
 - Sulfate/Sulfite reduction and reduced sulfide reactions
 - S-containing amino acid metabolism
 - S-containing vitamins and cofactors degradation
 - Glutathione metabolism and degradation
 - S-containing pesticides degradation
 - Elemental sulfur

Factors Impacting H₂S Formation

- Level of total nitrogen
- Level of methionine relative to total nitrogen
- Fermentation rate
- ▹ Use of SO₂
- Vitamin deficiency
- Presence of metal ions
- Inorganic sulfur in vineyard
- > Use of pesticides/fungicides
- Strain genetic background

Timing of Sulfur Fault Formation

- Primary Fermentation Early: Hydrogen Sulfide
- Primary Fermentation Late: Hydrogen Sulfide
- Post Fermentation: Hydrogen Sulfide or Sur Lie Faults
- Bottling: S-fault development

Higher Sulfides

- Emerge late in fermentation and during sur lie aging
- Release of compounds during entry into stationary phase by metabolically active yeast
- Come from degradation of sulfur containing amino acids
 - Biological
 - Chemical
 - From reaction of reduced sulfur intermediates with other cellular metabolites?
 - Formed chemically due to reduced conditions?

Degradation of cellular components: autolysis

Volatile Sulfur Compounds

 \succ Methanethiol: CH₃-SH \succ Ethanethiol: C₂H₅-SH \succ Dimethyl sulfide: CH₃-S-CH₃ Dimethyl disulfide: CH₃-S-S-CH₃ \succ Dimethyl trisulfide: CH₃-S-S-S-CH₃ \rightarrow Diethyl sulfide: C₂H₅-S-C₂H₅ \succ Diethyl disulfide: C₂H₅-S-S-C₂H₅

Sources of Higher Sulfides

S-Containing Amino Acids

S-Containing Vitamins and Cofactors

 Glutathione (Cysteine-containing tripeptide involved in redox buffering)

Taints Arising During Aging

Microbial Spoilage - Brettanomyces – Acetic Acid Bacteria - Lactic Acid Bacteria Oxidative Taints Sherry-like characters Solvent/chemical taints

Brettanomyces Aromas in Wine

Horse sweat > Leather > Earthy Medicinal Band Aid Smoky > Tobacco Barnyard Putrid ≻ Lilac

Brettanomyces Impacts on Wine

- Loss of 'fruit', 'floral' & 'honey' aromas
- Loss of negative aromas
- Increase in overall complexity
- Acetic acid, vinegar aroma
- Spice and smoke aroma
- Chemical, Plastic, Band Aid aroma
- Metallic, bitter taste
- Mousiness

Compounds Produced by Brett in Wine

- Signature spoilage compounds ethyl phenols, vinyl phenols
- Other spoilage compounds acetic acid, ethyl acetate, fatty acid, carboxylic acid
- Compounds that are positive Esters, higher alcohols, terpenes

Oxidative Taints

Off-colors:

- pink
- brown
- Off-flavors:
 - Aldehyde (nutty)
 - Rancid (oxidized fatty acid)
 - Hamster fur/stale tortilla chips
 - Chemical notes

Oxidative Taints

Function of oxygen exposure and wine's ability to consume oxygen Related to phenolic content Impacted by other factors such as pH Some oxidation reactions are desired; not all lead to defects = a delicate balance!

Taint Mitigation

> Best not to get it in the first place
 > Need to accurately define taint and source
 > Need to conduct well-designed trials to test efficacy of removal