Fusarium Wilt of Strawberry Management of Soilborne Pathogens

Ana M. Pastrana, Oleg Daugovish, and Tom Gordon

Department of Plant Pathology, University of California, Davis

18th Annual Strawberry Production – Ventura County

September 19, 2019

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

Collaborators:

- Steve Koike
- Mark Bolda
- Steve Knapp
- Glenn Cole

Fusarium wilt

Verticillium wilt

Macrophomina crown rot

Fusarium wilt

Fusarium oxysporum

DETECTION & CONFIRMATION of Fusarium Wilt Pathogens: Challenges, Errors, and Limitations

By: Steven T. Koike | Director, TriCal Diagnostics Tom Gordon | Professor, University of California at Davis

- ✓ *Fusarium oxysporum* is common in soil
- ✓ Most strains are not pathogenic
- ✓ Non-pathogenic strains colonize roots
- ✓ Pathogen ID requires further testing

Fusarium wilt

Fusarium oxysporum

Fusarium wilt

Fusarium oxysporum

Infection of root tips

Sugars

Effect Of Fumigation Treatment And Chilling On Fruit Yield Of Strawberry

10-15% yield increase by eliminating non-pathogenic fungi on roots

Root Cross Section

Non-pathogenic fungi colonize the root cortex

Fusarium oxysporum f. sp. *fragariae*

Xylem vessels

The Pathogen Moves Into The Shoot With Water

Spores

Xylem vessels

The Pathogen Moves Into The Shoot With Water

Colonized vascular tissue

Obstruction of water flow

<u>Management</u>

NO CURATIVE MEASURES

PREVENTION ------ AVOID INTRODUCTION

Avoid Introductions

Clean plants

Don't move soil

Fusarium Wilt

Same strain of the strawberry pathogen

Transmission of *Fusarium* to daughter plants

Transmission Of *Fusarium* **To Daughter Plants**

Monterey

San Andreas

Generation

Infected Daughter Plants Appear Healthy

Infected Daughter Plants

Disease may develop in a fruit production field

Prevention of infection in nurseries is critical

Management Of Soilborne Pathogens

Pre-plant fumigation

Flat fumigation to treat the entire field

Maximize distribution in beds

Efficacy Of Fumigants

Methyl Bromide: Chloropicrin 2:1 @ 350 pounds/acre

Chloropicrin @ 400 pounds/acre

Telone (1,3-Dichloropropene)

Metam sodium / K-Pam / Dominus

Options for Management of Fusarium Wilt of Strawberry in California

Thomas R. Gordon^a, Oleg Daugovish^b, Steven T. Koike^c, Christina M. Islas^a, Sharon C. Kirkpatrick^a, Jenna A. Yoshisato^a, and Douglas V. Shaw^d

Incomplete treatment

Mortality is not evenly distributed across beds

Options for Management of Fusarium Wilt of Strawberry in California

Thomas R. Gordon^a, Oleg Daugovish^b, Steven T. Koike^c, Christina M. Islas^a, Sharon C. Kirkpatrick^a, Jenna A. Yoshisato^a, and Douglas V. Shaw^d

Figure 2. The effect of position in a bed on mortality caused by Fusarium wilt in two strawberry cultivars. Values represent means of four replications and error bars correspond to $2 \times$ the standard error of the mean.

60:40 mix of chloropicrin:telone

Conclusions

- ✓ Flat fumigation is best
- ✓ Maximize efficacy of bed fumigation
- ✓ Chloropicrin is good
- ✓ More is better
- ✓ More driplines
- ✓ More water

Don't plant buffer zones

Management Of Soilborne Pathogens

Pre-plant fumigation

Flat fumigation to treat the entire field

Maximize distribution in beds

Crop rotation

Crop Rotation

Inoculum levels decline when NO crops are grown

Survival of F. o. lactucae in Fallow Soil

Crop Rotation

Inoculum levels decline when NO crops are grown

Inoculum levels decline when OTHER crops are grown

Fusarium wilt

Fusarium oxysporum

Effect of blackberry pathogen on strawberry

Albion Monterey San Andreas Portola Petaluma

Blackberry

Susceptibility Of Strawberry To Blackberry Pathogen

1 – 5 scale

<u>Cultivar</u>	F. o. mori	F. o. fragariae	
Albion	3.0	5.0	
Monterey	2.1	5.0	
San Andreas	1.0	1.0	
Portola	1.0	1.0	
Petaluma	1.0	5.0	

Rotation Crops

HIGH RISK

✓ Raspberry

✓ Blackberry

LOW RISK

- ✓ Spinach
- ✓ Wheat
- ✓ Broccoli
- ✓ Cilantro

The Effect Of Soil PH On Root Infection

Bacterial respiration is higher in neutral soils

In soil fungi compete with bacteria

pH near neutrality favors bacteria over fungi

Elevate Microbial Respiration

✓ Soil amendments

✓ That do not support pathogen growth

+ 310% increase in *F. oxysporum* f. sp. *fragariae* population

Compost

Survival of F. o. fragariae in soil

Management Of Soilborne Pathogens

Pre-plant fumigation

Flat fumigation to treat the entire field

Maximize distribution in beds

Crop rotation

Differences in susceptibility to Fusarium wilt

Camarosa

Susceptibility to Fusarium wilt

Cultivar

Naturally Infested Field

A Frid

Comparison of resistance assessments

Correlation coefficient = 0.9908

Cultivars

Genome-Wide Association Mapping Uncovers Fw1, a Dominant Gene Conferring Resistance to Fusarium Wilt in Strawberry

Dominique D. A. Pincot,* Thomas J. Poorten,* Michael A. Hardigan,* Julia M. Harshman,* Charlotte B. Acharya,* Glenn S. Cole,* Thomas R. Gordon,[†] Michelle Stueven,[†] Patrick P. Edger,[‡] and Steven J. Knapp^{*,1} *Department of Plant Sciences and [†]Department of Plant Pathology, University of California, Davis, California, 95616, and

[†]Department of Horticulture, Michigan State University, East Lansing, Michigan 48824

ORCID IDs: 0000-0001-9768-0740 (T.J.P.); 0000-0002-5188-8084 (J.M.H.); 0000-0001-6498-5409 (S.J.K.)

✓ Major gene resistance

✓ Can be moved into other cultivars

✓ Does not prevent colonization

✓ May allow inoculum build-up in soil

Management Of Soilborne Pathogens

✓ <u>Avoid introductions</u>

Clean plants Don't move soil

✓ <u>Reduce inoculum levels</u>

Flat fumigation is best

Maximize distribution in beds

Avoid cane berries and lettuce

✓ <u>Use resistant cultivars</u>

Thank You!

How much Fusarium in soil can my strawberry handle?

2000 CFUs per gram (4), 1000 CFUs per gram (3), 500 CFUs per gram (2), 100 CFUs per gram (1), 0 CFU (just sand) (0).

Treatments

- Soil excavated from planting holes (1L) is mixed with Fusarium-inoculated sand (0.1L) and returned to planting holes
- 3 cultivars Planted in RCBD plots with 4 reps

Plant size in response to Fusarium (01/05/2018)

Albion in response to Fusarium (12/02/2018)

Monterey in response to Fusarium (12/02/2018)

Victor in response to Fusarium (12/02/2018)

Albion without Fusarium - May

Albion in response to Fusarium - May

Albion in response to Fusarium - May

Fruit yield (total) in response to Fusarium

Percent mortality due to Fusarium, 07/05/2019

What's next?

- Another season of data to help deign prediction models = relationship of pathogen density with cultivar performance
- Do the same for *Macrophomina phaseolina* (charcoal rot pathogen)

Thank You

http://ucanr.edu/sites/eskalenlab