Modern Agriculture Under Stress: Lessons from the Murray-Darling

MURRAY.

DARLING

COMMISSION

Wendy Craik

Chief Executive

Murray-Darling Basin Commission

Wednesday 25 June

Murray-Darling Basin

Spain and the Murray-Darling Basin: Relative size

Murray-Darling Basin

Spain

Highly Variable Flows

"A land of droughts and flooding rains"

COUNTRY	RIVER	RATIO BETWEEN MAXIMUM and MINIMUM ANNUAL INFLOWS
BRAZIL	AMAZON	1.3
SWITZERLAND	RHINE	1.9
CHINA	YANGTZE	2.0
SUDAN	WHITE NILE	2.4
USA	ΡΟΤΟΜΑϹ	3.9
SOUTH AFRICA	ORANGE	16.9
AUSTRALIA	MURRAY	31
AUSTRALIA	DARLING	>4,000

Rainfall Distribution in the Basin

A Highly Regulated System \$2 billion AUD of Infrastructure

MURRAY

MDBC Structure

The MDBC Has Many 'On the Ground' Successes

Day to Day River Management:

- 1. River Operations
- 2. Asset Management
- 3. Water Accounting

- 4. Interstate Water Trade
- 5. Drought Contingency Planning

Sustainable Resource Management:	
----------------------------------	--

- 6. The Cap on Diversions7. Basin Salinity Management
- 7. The Living Murray Water Recovery 10. Native Fish Strategy
- 8. Water Quality Monitoring

Planning for the Future:

- 11. Sustainable Rivers Audit
- 12. Northern Basin Project
- 13. Integrated Basin Reporting

- 14. Risks to Shared Water Resources
- **15. Water Policy Development**
- **16. River Murray Operations Review**

Five Factors make this Drought Different

© Commonwealth of Australia 2007, Australian Bureau of Meteorology

Issued: 01/11/2007

Inflows to the River Murray (excluding Menindee and Snowy) Long Term Average and Selected Water Years

Murray-Darling Basin Commission January 2008

2. Two Consecutive Very Dry Years

River Murray System Inflows 1891 - 2008

3. Record High Temperatures

MDB Mean Temperature Anomaly

Dry Catchment Impact on Runoff: The Ovens River

Ovens River: Flow reponse to rainfall events

4. Surface Water Over-Allocation

Growth in Water Use in Murray-Darling Basin Unsustainable, Over-Allocated Surface Water Diversions

5. Drier Autumns

Monthly mean south eastern Australia rainfall, 1961-1990, 1996-2006 and anomaly

Rainfall Autumn 2008: March, April and May

Murray Darling Rainfall Deciles

1 March to 31 May 2008

Distribution Based on Gridded Data Product of the National Climate Centre

River Murray Inflows: Inflows exclude Menindee and Snowy

Murray-Darling Basin Commission May 2008

River Murray & Climate Change: A Typical Prediction

Figure E.2 Potential reduction in total inflows for the Murray system over 50 years (compared with the long-term average)¹

Source: Department of Sustainability and Environment Victoria – Northern Region Sustainable Water Strategy discussion paper 2008

Models consistently predict lower rainfall and streamflows

Active Storage: Storages are close to record low levels

End of Month Storage (GL)

Irrigation Impacts: 2007/08 Record Low Diversions

DARL

COMMISSION

Irrigation Impacts: Response from the Irrigation Industry

"Triage" of permanent plantings

- Unprofitable value varieties abandoned
- Mid-value varieties survival, minimise impact on next year
- High value varieties cropped but with lower yield

Modification of business practices Significant increase in water trade

- ≈ 30% of water used has been traded
- Record prices over \$1,000/ML

Drought and Contingency Measures A significant environmental impact

Wetland Disconnection

Recent Watering: ≈1% of available water used

Aim to reduce evaporation and losses and maximise flexibility:

- Retain water in headwater storages
- Lake Mulwala drawdown capture Ovens River peak flows
- Lower weir-pool levels reduce evaporation
- Reduced flows in the Murray, especially over Lock 1
- Early pumping to Adelaide storages
- Disconnecting artificially inundated wetlands
- Lower pumps at off-takes

Aim to maximise water manager and irrigator flexibility:

- Critical water carry-over in all states
- Allocation water carry-over available for all irrigators
- Relaxed water trade restrictions
- Some contingency measures are continuing
- Communicating ongoing drought issues to irrigators and the public

Long-term Adaptation: Public risk management

- MURRAY DARLING B A S I N COMMISSION
- Guaranteeing critical urban, stock and domestic water requirements:
 - Minimum water carry-over
 - Changed Snowy rules
 - Reduced planning minimums
 - Wetland disconnection (a last resort)
- Changing water sharing arrangements
 - Equitable shares in wet and dry conditions
- Preserving environmental 'Museum Pieces'

Long-term Adaptation: Private risk management

Maximising irrigator flexibility – Irrigation water carry-over – Water Trade • Allocation transfer (temporary trade) • Entitlement transfer (permanent trade) – Information

Issues for the Future: Adapting to reduced water availability

MURRAY-DARLING B.A.S.I.N COMMISSION

- Rebalancing consumptive and environmental water shares
- Planning for new minimum flows

 Impacts on irrigation and the environment
- More extreme events
- Technological advancements
- Social adjustment

www.mdbc.gov.au