Rootstock Selection

A lmost all the wine varieties described in *Wine Grape Varieties in California* are of pure *Vitis vinifera* parentage. This species is particularly prone to attack by two root pests: grape phylloxera and parasitic nematodes. *Vitis vinifera* vines can be protected from these pests by grafting them to rootstock varieties derived from other vine species and resistant hybrids. Many of the rootstocks used for this purpose are adapted to particular soil types, chemistry, and fertility. They may also be used to overcome vineyard problems such as drought, excess water, and salinity.

It is important that growers select rootstocks that are:

- · resistant to present and potential soil pests
- suitable for the soil's texture, depth, and fertility
- compatible with soil chemistry (pH, salinity, lime content)
- favored for the anticipated soil water availability, drainage, and irrigation practice
- appropriate for the vineyard design, and
- appropriate for the fruiting variety's growth and fruiting characteristics.

			Nematode Resistance		Tolerance			
Rootstock	Vitis parentage	Phylloxera resistance	Root knot	Dagger (Xiphinema index)	Drought	Wet soil	Salinity	Lime
Riparia Gloire	riparia	High	Low	Med.	Low	Low	Med.	Low
St. George (Rupestris du lot)	rupestris	High	Low	Low	Low-med. in shallow soils; high in deep soils	Low-med.	Medhigh	Med.
SO4 (Selection Oppenheim)	berlandieri × riparia	High	Med.– high	Low-med.	Low-med.	Medhigh	Low-med.	Med.
5BB (Kober)	berlandieri × riparia	High	Med.– high	Med.	Med.	Low	Med.	Medhigh
5C (Teleki)	berlandieri × riparia	High	Med.– high	Low-med.	Low	Low-med.	Med.	Med.
420A (Millardet et de Grasset)	berlandieri × riparia	High	Med.	Low	Med.	Low-med.	Low	Med.–high
99R (Richter)	berlandieri × rupestris	High	Med.– high	Low-med.	Medhigh	Low	Med.	Med.
110R (Richter)	berlandieri × rupestris	High	Low– med.	Low	High	Low-med.	Med.	Med.

In this publication, each wine variety's description includes information on rootstock suitability and experience. Additionally, the following table provides comparative information that may assist growers with rootstock decisions. This information is based on written reports throughout Europe and the New World, including California. The ratings and comments

provided here are based on prevalence in the literature and those reports most likely to fit California conditions. As more experience is gained in California's diverse viticulture environment, deviation from the information in the table can be expected. Widespread University of California and grower rootstock trials will continue to provide updated information on rootstock performance. Growers should also consult with their Cooperative Extension farm advisor, other local growers, consultants, and nursery representatives when selecting a rootstock.

—L. Peter Christensen

Influence	on scion			
Vigor	Mineral nutrition ¹	Soil adaptation	Ease of propagation	Other characteristics
Low-med.	N, P: low K, Mg: low–med.	Deep, well-drained, fertile, moist soils	High	Early maturation; scions tend to overbear
High	N: high P: low on low-P soils, high on high-P soils K: high	Deep soils	High	Fruit set problems with some scions; latent virus tolerant
Low-med.	N: low–med. P: med. K: med.–high Mg: med.	Moist, clay soils	Med.	Noted as a cool-region rootstock
Med.	N: med.–high P, K, Zn: med. Ca, Mg: med.–high	Moist, clay soils	High	Susceptible to phytoph- thora root rot; adapted to high-vigor varieties
Low-med.	N: low P, K: med. Mg: med.–high Zn: low–med.	Moist, clay soils	High	_
Low	N, P, K: Iow Mg: med. Zn: Iow–med.	Fine-textured, fer tile soils	Med.	Scions tend to overbear when young
Medhigh	P: med. K: high Mg: med.	Tolerant of acid soil	Med.	Young scions may develop slowly
Med.	N: med. P: high K: low–med. Mg, Zn: med.	Hillside soils; acid soils	Low-med.	Develops slowly in wet soils

¹Influence on scion mineral nutrition refers to comparative petiole tissue levels of nutritional elements. — not available

13

Rootstock Selection (continued)

			Nematode Resistance		Tolerance			
Rootstock	Vitis parentage	Phylloxera resistance	Root knot	Dagger (Xiphinema index)	Drought	Wet soil	Salinity	Lime
140Ru (Ruggeri)	berlandieri × rupestris	High	Low– med.	Low	High	Low	Medhigh	Medhigh
1103P (Paulsen)	berlandieri × rupestris	High	Med.– high	Low	Med.–high	Medhigh	Med.	Med.
3309C (Couderc)	riparia × rup- estris	High	Low	Low	Low-med.	Low-med.	Low-med.	Low-med.
101-14 Mgt (Millardet et de Grasset)	riparia × rup- estris	High	Med.– high	Med.	Low-med.	Med.	Med.	Low-med.
Schwarzmann	riparia × rup- estris	High	Med.	High	Med.	Med.	Medhigh	Med.
44-53M (Malègue)	riparia × (cordifolia × rupestris)	High	Low	—	High	—	—	Low-med.
1616C (Couderc)	longii × riparia	High	High	Med.	Low	High	Medhigh	Low-med.
Salt Creek (Ramsey)	champinii	High	High	Low-med.	Med.–high	Low-med.	High	Med.
Dogridge	champinii	Med.	Med.– high	Low-med.	Med.	Low-med.	Medhigh	Med.
Harmony	1613 (solonis × Othello) × Dogridge	Low-med. ²	Med.– high	Medhigh	Low-med.	Low	Low-med.	Med.
Freedom	1613 (solonis \times Othello) \times Dogridge	Low-med. ²	High	High	Med.	Low	Low-med.	Med.
O39-16	vinifera × rotundifolia	High	Low	High	Low	—	Low	Low

Influence on scion				
Vigor	Mineral nutrition ¹	Soil adaptation	Ease of propagation	Other characteristics
High	N: med.–high P, Mg: high K: low	Adapted to drought and acid soils	Med.	Does poorly in non- irrigated, low K soils
Medhigh	N: med.–high P, Mg: high K, Zn: low–med.	Adapted to drought and saline soils	High	_
Low-med.	N: med.–high P, Ca: low K, Mg, Zn: med.	Deep soils	High	Sensitive to latent viruses; tolerant of cold injury
Med.	N, K: med.–high P, Mg, Ca: low Zn: med.	Moist, clay soils	High	_
Med.	N, P: med. K: med.–high Mg: Iow	Moist, deep soils	High	_
Med.	N: low–med. P, Mg, Ca: low K: high	High Mg soils	High	Readily Mg deficient in low Mg soils
Low	N: low K: med.–high	Best on fertile, med to fine- textured soils	High	Poor on low-vigor sites; tolerates wet soils
High	N, P: high K: med.–high Zn, Mn: Iow	Sandy, infer tile	Low	Tolerant to Phytophthora
Very high	N, P: high K: med. Zn: low	Very sandy, infertile	Low	Promotes excess vigor, poor fruit set
Medhigh	N: low P: med. K: high Zn: low–med.	Sandy loams and loamy sands	High	_
High	N, P, K: high Mg: med. Zn, Mn: low	Sandy to sandy loams	Medhigh	Sensitive to latent viruses
High	N, K: high P: low–med. Zn: low	Poor on coarse, sandy soils due to low root knot nema- tode tolerance	Very low	Tolerant of fanleaf virus

¹Influence on scion mineral nutrition refers to comparative petiole tissue levels of nutritional elements. ²The degree of long-term phylloxera resistance is questionable due to the unknown *Vitis vinifera* parentage of these rootstocks. — not available