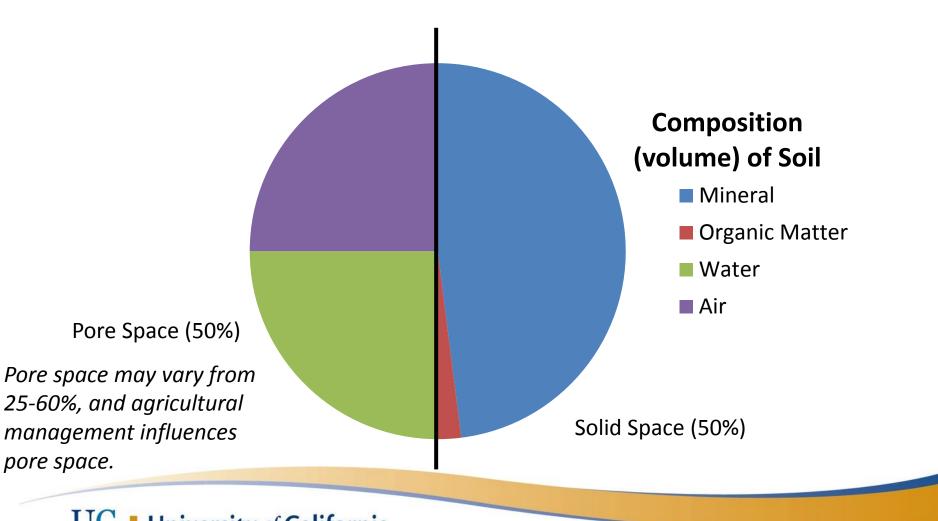
Managing for Soil Health and Soil Salinity

Michelle Leinfelder-Miles Delta Crops Resource Management Advisor UC Cooperative Extension, San Joaquin County

> SJC and Delta Field Crops Meeting Stockton, CA January 17, 2019

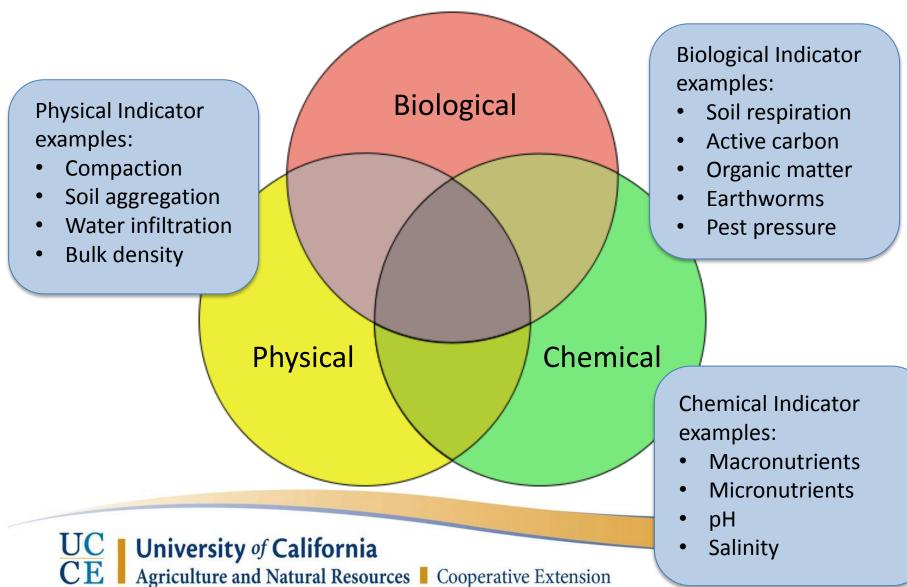


Presentation Outline

- What is soil health?
- What management practices can improve soil health?
- Considerations for both soil health and salinity management

What is soil?

UC CE University of California Agriculture and Natural Resources Cooperative Extension


What is soil health?

"the capacity of a soil to function, within ecosystem and land-use boundaries, to sustain biological productivity, maintain environmental quality, and promote plant and animal health."

Doran and Parkin, 1994

What is soil health?

Soil Health Framework – An Example

Comprehensive Assessment of Soil Health

The Cornell Framework

B.N. Moebius-Chune, D.J. Moebius-Chune, B.K. Gugino, O.J. Idowu, R.R. Schindelbeck, A.J. Ristow, H.M. van Es, J.E. Thies, H.A. Shayler, M.B. McBride, K.S.M. Kurtz, D.W. Wolfe, and G.S. Abawi

Third Edition

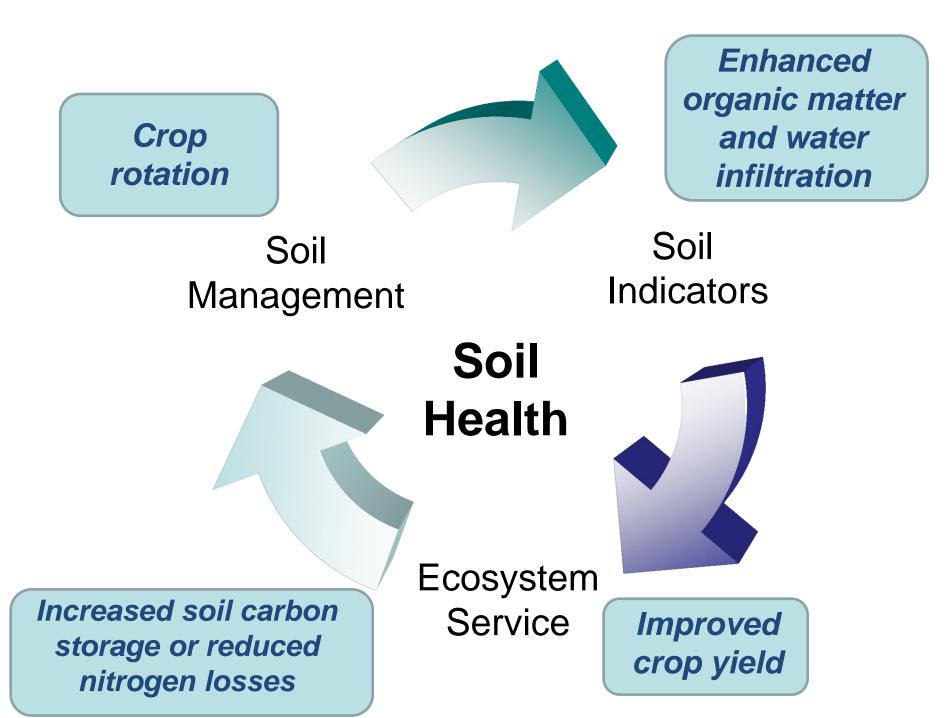
Comprehensive Assessment of Soil Health

From the Cornell Soil Health Laboratory, Department of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853. http://soilhealth.cais.cornell.edu

Grower: Bob Schindelbe			Sample ID:	LL8
306 Tov	o Schindelbec 5 Tower Rd. aca, NY 14853		Field ID:	Caldwell Field- intensive management
			Date Sample	d: 03/11/2015
Agricultural Service Provider: Mr. Bob Consulting rrs3@cornell.edu			Given Soil Typ	pe: Collamer silt loam
			Crops Grown:	WHT/WHT/WHT
			Tillage:	7-9 inches
Measu	red Soil Textural Cla	ass: silt		7-9 inches
	rred Soil Textural Cla 2% - Silt: 83% - Cla			
			loam	6
Sand:	2% - Silt: 83% - Cla	y: 3	loam	6

roup	Indicator 2	Value	Rating	Constraints 5
hysical	Available Water Capacity	0.14	37	
shysical	Surface Hardness	260	12	Rooting, Water Transmission
physical	Subsurface Hardness	340	35	
physical	Aggregate Stability	15.7	19	Aeration, Infiltration, Rooting, Crusting, Sealing, Erosion, Runoff
lological	Organic Matter	2.5	28	
Vological	ACE Soil Protein Index	5.1	25	
vological	Soil Respiration	0.5	40	
vological	Active Carbon	288	12	Energy Source for Soil Biota
chemical	Soil pH	6.5	100	10
themical	Extractable Phosphorus	20.0	100	
chemical	Extractable Potassium	150.6	100	
hemical	Minor Elements Mg: 131.0 / Fe: 1.2 / Mn: 12.9 / Zn: 0.3		100	

Overall Quality Score:


51 / Medium

Soil health indicators should...

- Measure properties that are sensitive to management and have an impact on soil functionality.
- Not be too costly.
- Be selected with consideration of the landscape and climate.

Changes in soil health happen over the long-term.

What we know...

Practices that improve soil health: adding organic matter amendments (e.g. manure, compost)

Improves:

- Soil aggregation
- Water infiltration
- Nutrient availability for plants
- Food source for soil biology
 UC University of California CE Agriculture and Natural Resources Cooperative Extension

What we know...

Practices that improve soil health: reduced soil

disturbance (i.e. tillage)

Improves:

- Soil aggregation
- Organic matter
- Soil carbon storage

What we know...

Practices that improve soil health: cover cropping

Improves:

- Weed suppression
- Nitrogen availability (adding to soil pool)
- Nutrient scavenging (subtracting from soil pool)
- (Reduces) Compaction
- Food sources for soil biology

UC CE University of California Agriculture and Natural Resources Cooperative Extension I actively employ recommend practices for improving on-farm soil health.

- True
- False

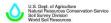
The challenge(s) with incorporating soil health practices is (are)...

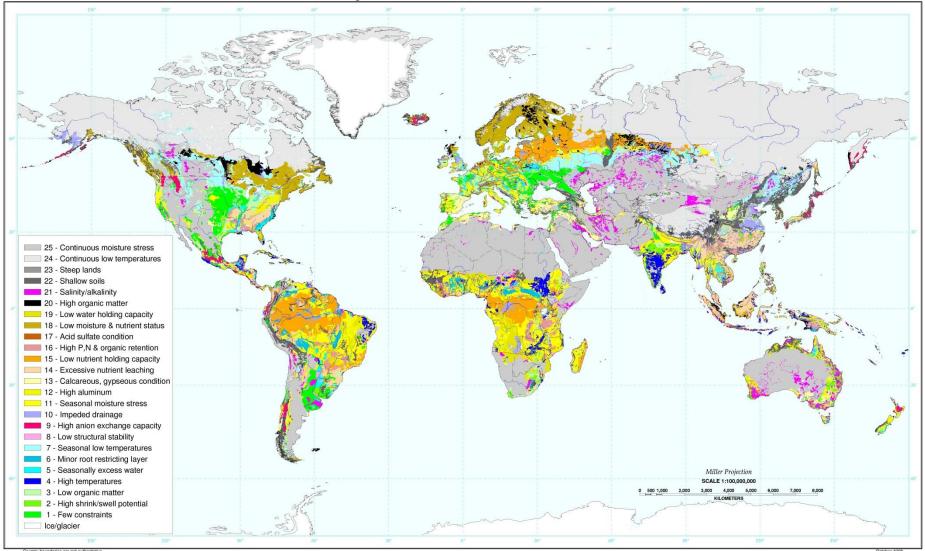
- A. The management practices are not relevant to my operation.
- B. I don't have enough knowledge on the practices.
- C. The practices are too costly.
- D. I don't have the right equipment.
- E. Other
- F. None of the above.

Why all the interest in soil health?

With little new agricultural land to develop globally, preserving soil quality is critical to sustaining the needs of a growing population (Doran, 2002).

Air and water quality are impacted by soil.


We may think that 'soil health' is a new concept, particularly as it has been recently recognized in state programs, but in fact, preserving soil quality is not new to government policies.



"Some folks don't know how to appreciate good news" (September 16, 1927). Credit: Courtesy of the J.N. "Ding" Darling Foundation.

Soil conservation policy in the **United States** dates back to the Great Depression, but it was disguised as commoditycontrol policy. The primary interest was in mitigating soil erosion.

Major Land Resource Stresses

We know, however, that stresses on land go beyond erosion, and include salinity, poor drainage, toxicities, among others, not to mention inhospitable climates for agriculture.

Salinity Management and Leaching

Background: Environmental conditions in the Delta (e.g. low permeability soils, shallow groundwater), coupled with water-saving management (e.g. conversion to drip irrigation), limit growers' ability to manage salts.

Furthermore, State Water Resources Control Board adopts water quality objectives for the protection of agriculture in the Delta. The salinity objectives for the South Delta have been relaxed as part of this process.

Objective: Understand soil salinity profiles in Delta tomato and alfalfa fields to help inform salinity management and water policies.

Research Summary: Salinity and Leaching

- Project results illustrate the inherent low permeability of certain Delta soils, shallow groundwater, a build-up of salts in the soil to levels that have the potential to affect crop yields, and low leaching fraction.
- The Delta's unique growing conditions put constraints on growers' ability to manage salts.
- Winter rain appears to provide our best leaching in normal rainfall years.
- Enhance leaching during the off-season by leveraging rainfall with irrigation water to wet profile before a rain event.

Managing for soil health

Background: CDFA developed the Healthy Soils Program and awards grants for projects that improve soil health and sequester carbon.

 Compost, reduced tillage, and cover cropping are approved practices

Objective: Determine how practices impact soil quality, greenhouse gas emissions, and/or crop yield.

Funding is provided through California Climate Investments (i.e. cap and trade); thus, greenhouse gas monitoring is integrated into HSP projects.

Managing for soil health

Demonstration project (2018-2020) was funded to trial:

- Summer cover crop in San Joaquin
- Winter cover crop in Sutter
- Compost amendment in Merced

Soil tests: bulk density, pH, salinity,

total C and N, aggregate stability, infiltration, and active C GHG measurements: (N₂O, CH₄) around rain events and management practices

Cover crop performance and crop yields

Summer Cover Crop Site

In SJC, we grew a summer cover crop between winter cereal crops.

- 4 acres, 3 blocks, 2 treatments (cover crop vs. none)
- 'Red Ripper' cowpea planted at 50 lbs/acre on 7" row spacing
- Anticipated benefits: Cowpea needs warm soil conditions for germination, fixes nitrogen, and is moderately tolerant of salinity
- Anticipated challenges: moisture and pests

Preliminary Research Results: *Summer Cover Cropping*

- Cover cropping had no observed effect on bulk density, Total N, and Total C.
- Cover cropping may have slightly raised the pH in the top 30 cm, compared to dry fallow.
- The application of irrigation water to the cover crop treatment increased soil moisture and contributed to a reduction in the concentration of salts in the upper layers of soil compared to dry fallow.

Preliminary Research Results: *Summer Cover Cropping*

Baseline soil properties (July 2018).

Depth (cm)	Bulk Density (g/cm ³)	Soil Moisture (% by vol.)	Salinity (EC _e)	рН	Total N (%)	Total C (%)
0-15	1.01	0.13	0.47	5.39	0.27	3.47
15-30	0.97	0.17	0.62	5.32	0.25	3.06
30-60	1.06	0.22	1.29	5.7	0.17	2.01
60-90	1.02	0.26	2.44	5.9	0.10	1.06

University of California

Agriculture and Natural Resources Cooperative Extension

Preliminary Research Results: Summer Cover Cropping

Soil properties after one season of cover cropping (October 2018). Data represent the average of three replicates.

Trt	Depth (cm)	Bulk Density (g/cm ³)	Soil Moisture (% by vol.)	Salinity (EC _e)	рН	Total N (%)	Total C (%)
No CC	0-15	0.96	0.08	1.05	5.32	0.27	3.39
No CC	15-30	0.92	0.13	1.39	5.29	0.23	2.97
CC	0-15	0.90	0.23	0.60	5.49	0.27	3.42
CC	15-30	1.06	0.26	0.67	5.47	0.23	2.89

University of California

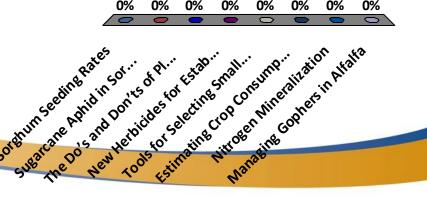
Agriculture and Natural Resources Cooperative Extension

Summary

- Soil health is defined as soil functioning and is influenced by inherent site characteristics and management practices.
- We know that practices like plant diversity/crop rotations, cover cropping, organic matter amendments, and reduced disturbance, improve soil health by sequestering carbon, and enhancing soil biology and nutrient cycling.
- Previous salinity work indicated the best time for salinity management was during the winter, but there may be other solutions that manage for soil health and salinity.

I learned useful information from this presentation

- True
- False


I intend to use what I learned in the next 12 months.

- True
- False

What topic presented today will help you *most* in your work?

- A. N Stabilizers
- B. N Demand and Water Use in Corn
- C. Regulatory Update
- D. Fish Friendly Farming Program
- E. Agronomic Practices for Improving Alfalfa Pest Managment
- F. Optimization of Surface Irrigation Systems
- G. Field Bindweed
- H. Soil Health and Soil Salinity

Crops I would like to learn more about in the future are:

saftlower

Rice

Sugar beets

wheat

Small Brains

Sorehum

Recorn

Fieldcom

other

- Alfalfa Α
- B. Field corn
- Silage corn C.
- Sorghum D.
- F. Wheat
- Other small grains F.
- Rice G.
- H. Safflower
- Sugar beets Ι.
- J. Other

Which category of information most interests you?

0%

other

0%

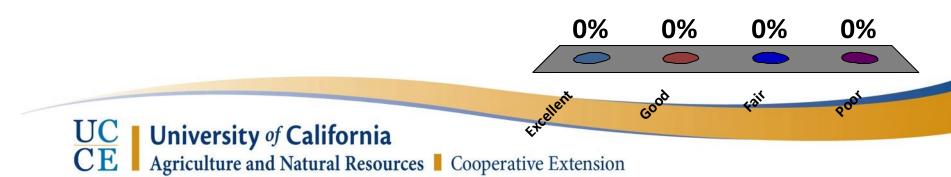
i and water management

COO management Cultur.

0%

Economics

0%


Regulations/policy

- Pest management Α.
- Nutrient management Β.
- C. Soil and water management
- Crop D. management/cultural practices
- E. Economics
- **Regulations/policy** F.
- Other G.

Overall, I would rate this meeting:

- A. Excellent
- B. Good
- C. Fair
- D. Poor

Thank you!

Michelle Leinfelder-Miles (209) 953-6100 <u>mmleinfeldermiles@ucanr.edu</u> http://ucanr.edu/sites/deltacrops/ http://ucanr.edu/blogs/sjcfieldcrops/

