Fusarium wilt of tomato

Tom Gordon Plant Pathology UC Davis

Crown rot

Foot rot

Crown rot

Foot rot

Fusarium oxysporum

Fusarium oxysporum

Microconidia carried upward in xylem vessels

Fusarium oxysporum

Discolored vascular tissue

Microconidia carried upward in xylem vessels

Discolored vascular tissue

Microconidia carried upward in xylem vessels

Origin of Fusarium wilt

Fusarium oxysporum is common in arable soils

Grasslands

Populations of *Fusarium oxysporum*

Native and cultivated soils

Same population in both soils

Most are non-pathogenic

No visible damage to roots

Pathogens arise through chance encounters

Strain * crop combination

> 120 host-specific strains

Pathogens arise through chance encounters

Strain * crop combination

> 120 host-specific strains

De novo origin is a rare event

Most new occurrences are introductions of existing strains

> 120 host-specific strains

De novo origin is a rare event

Most new occurrences are introductions of existing strains

Moved with infested soil

or seed

Crop rotation

Growing non-susceptible crops

Attrition of existing propagules

Survival of the pathogen in fallow soil

The Fusarium wilt pathogen will infect roots of most crops

Cortical colonies return few propagules to the soil

< 10%

Most fungal propagules will not be affected by the crop

Pathogen population in soil

Two or three years out of a susceptible crop may be sufficient to reduce inoculum to levels that will not produce significant damage

If rotation crops do not support extensive development

What determines the rate of attrition?

Microbial activity

Removes organic matter that protects pathogen propagules

Warmer is better

Wet is better

Promoting decline in inoculum

Solarization to heat soil

Promoting decline in inoculum

Solarization to heat soil

Cover soil with clear plastic tarp Thermal inactivation of fungal propagules Favor growth of antagonistic microbes

Adaptation of Soil Solarization to the Integrated Management of Soilborne Pests of Tomato Under Humid Conditions

D. O. Chellemi, S. M. Olson, D. J. Mitchell, I. Secker, and R. McSorley

First and second authors: University of Florida, North Florida Research and Education Center, Route 3, Box 4370, Quincy 32351; third author: University of Florida, Department of Plant Pathology, Gainesville 32611; fourth author: Polyon Barkai, Kibbutz Barkai, Israel; and fifth author: University of Florida, Department of Entomology and Nematology, Gainesville 32611. Accepted for publication 22 November 1996.

Tarped for 40 – 55 days

Summer in Florida

Control of Fusarium wilt = soil fumigation

100 °F at 12 inches

Anaerobic soil disinfestation

Incorporate substrate

Rice hulls / grape pomace

Tarp and irrigate to achieve anaerobic conditions

Lack of oxygen

Altered microbial community

Best with high ambient temperatures

Genetic resistance to Fusarium wilt

Resistance overcome by new pathogenic race

Durability of resistance cannot be predicted

A pathogenic race may be present before the resistance gene it overcomes has been deployed

Movement of pre-existing forms is often the cause of failures in genetic resistance

Sanitation

Soil on equipment

Pathogens may be present where no plants show symptoms

Minimize increase in pathogen population

Most inoculum is produced above-ground

Composting will kill pathogens

Most inoculum is produced above-ground

Composting will kill pathogens

Temperature should reach $131^{\circ}F$ for ≥ 15 days

Fusarium wilt of tomato

Tom Gordon Plant Pathology UC Davis

