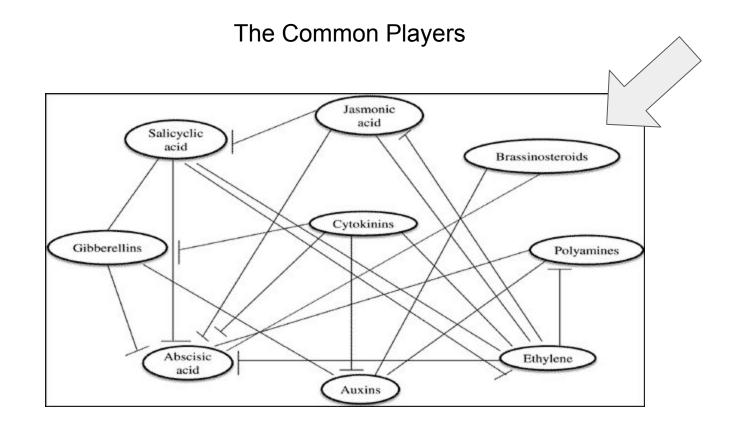


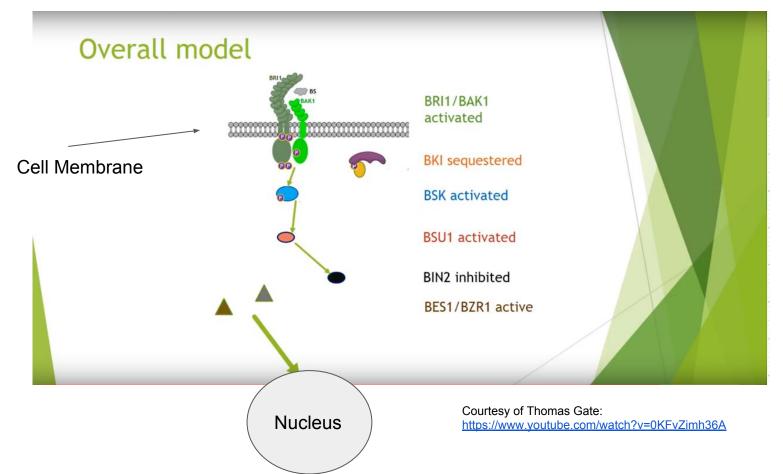
Biostimulants and Biologicals: A Natural Synergy

Tristan Hudak Vice President Ag Biotech, Inc.

Presentation Outline

- Plant hormones and crosstalk
- Main actives in Vitazyme
- Biofertilizers in general
- Bio Seed actives
- Our symbiotic Cycle
- Results in California



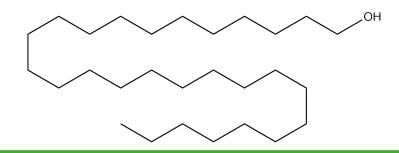

Photo credit: Ohri, P., Bhardwaj, R., Bali, S., Kaur, R., Jasrotia, S., Khajuria, A., & Parihar, R. (2015). The Common Molecular Players in Plant Hormone Crosstalk and Signaling. *Current Protein & Peptide Science, 16*(5), 369-388. doi:10.2174/1389203716666150330141922

Functions governed by BRs

- Increased chloroplast development
- Promote cell expansion and division in shoots
- Root growth in low concentrations
- Pollen tube elongation+growth
- Seed germination
- Cell elongation when acting with auxins

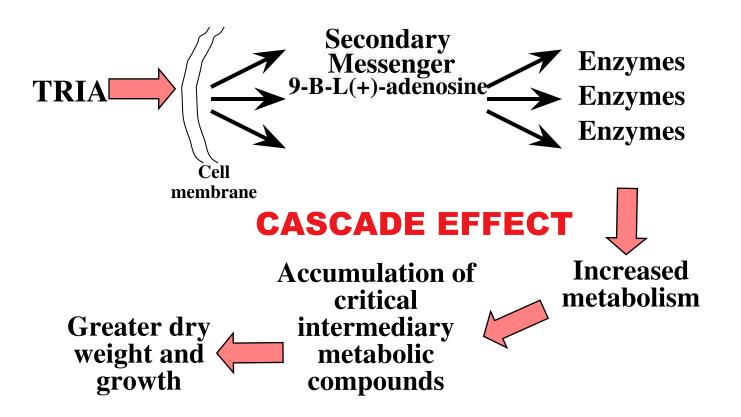
No evidence for long distance transport, however, follow-up applications will **compound** the effects

Brassinosteroid signaling



Key proteins table

nthesis	CPD DWF4	Cytochrome P450 monooxygenase CYP90A1
	The second s	Steroid 22-alpha-hydroxylase
ivation	BAS1 SOB7	Degenerately functioning Cytochrome P450s
ptors	BRI1 BAK1	Brassinosteroid Insensitive 1 BRI1 associated kinase
Illing Circuitry	BKI BSK BSU1 BIN2	BRI1 kinase inhibitor S/T protein kinase S/T protein phosphatase Shaggy-related protein kinase
cription Factors	BES1 BZR1	BRASSINAZOLE-RESISTANT 2 BRASSINAZOLE-RESISTANT 1
	ptors alling Circuitry scription Factors	ptors BRI1 BAK1 alling Circuitry BKI BSK BSU1 BIN2 scription Factors BES1


Triacontanol: The Other Workhorse

- Fatty alcohol found in cuticle waxes and beeswax
- Mobile growth stimulant
- Not concentration sensitive
- Known for drought stress relief, enhancement of photosynthesis
- Increase of carbohydrate metabolism enzymes, L(+)-adenosine

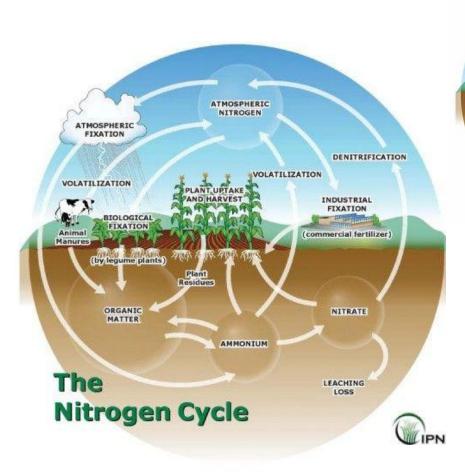
Triacontanol Mode of Action

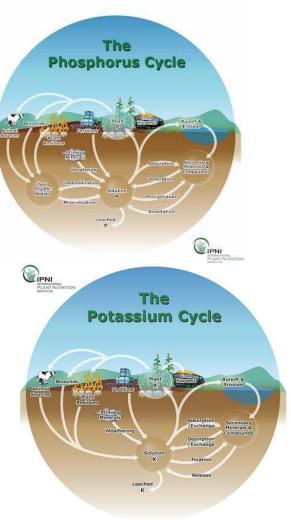
Plant response to Triacontanol

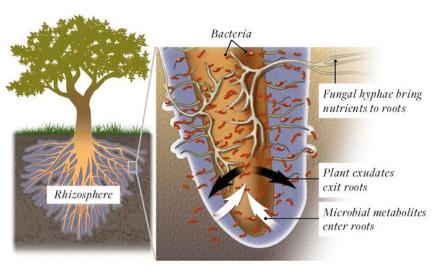
- Increased rate of CO2 fixation
- Increase in specific activity of RuBisCO and phosphoenolpyruvate carboxylase
- Increased activity of key respiratory enzyme malate dehydrogenase
- Net increase in CO2 uptake
- Increased carbohydrate and amino acid production

(Savithiry et al. 1992 Savithiry, S, Wert, V and Ries, S. 1992. Influence of $9-\beta-L(+)$ - adenosine on malate dehydrogenase activity in rice. *Physiol Plant*, 84: 460–466).

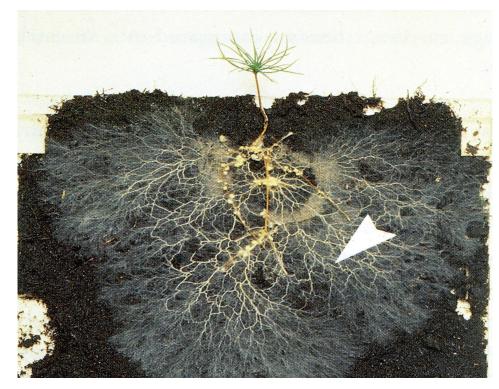
Ries and Houtz (1983 Ries, S and Houtz, R. 1983. Triacontanol as a plant growth regulator. *Hort Sci*, 18: 654–662.)


Houtz RL, Ries SK, Tolbert NE 1985a . Effect of triacontanol on *Chlamydomonas* I. Stimulation of growth and photosynthetic CO2 assimilation . *Plant Physiol* 79 : 357 – 364 .;


Ivanov, AG and Angelov, MN. 1997. Photosynthesis response to triacontanol correlates with increased dynamics of mesophyll protoplast and chloroplast membranes. *Plant Growth Regul*, 21: 145–152.



Presentation Outline


- Plant hormones and crosstalk
- Main actives in Vitazyme
- Biofertilizers in general
- Bio Seed actives
- Our symbiotic Cycle
- Results in California

Courtesy of Nautilus, march 31, 2016

Guaranteed analysis:

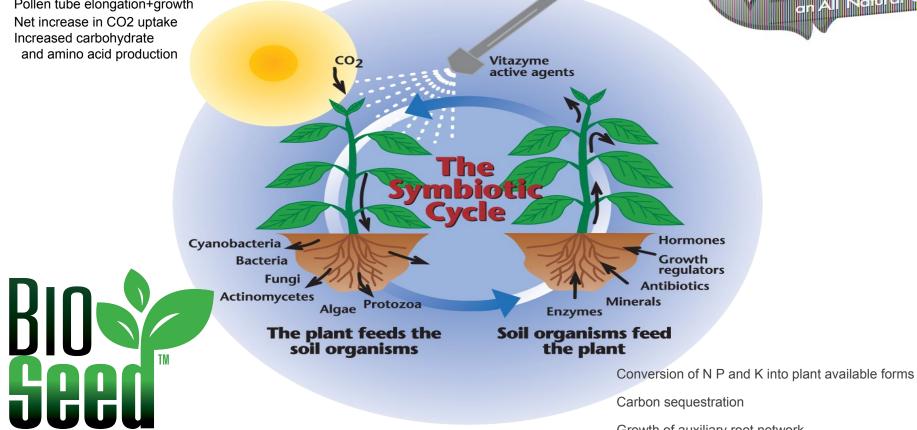
- Paenibacillus azotofixans.....
- Bacillus megaterium
- Bacillus mucilaginosus.....
- Bacillus subtilis
- Trichoderma harzianum

1x10^6 CFU/g 1x10^6 CFU/g 1x10^6 CFU/g 1x10^6 CFU/g 1x10^6 CFU/g

Known Benefits

- Conversion of unavailable forms of N P and K into plant available forms in the soil solution
- Balancing of the C:N ratios in the soil
- Improving seedling vigor + Leaf area index
- Non-crop specific inoculate
- Facultative, Gram-positive strains 1 yr stability
- Rhizosphere competent

Grower's standard Gr

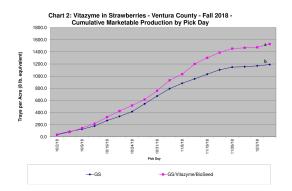

Grower's standard + PGH

Bio Seed 0.1% seed weight

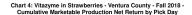
Bio Seed 0.2% of seed weight

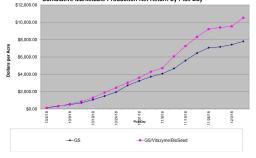
Tomatoes, day 19 Salinas, CA 2019 Increased chloroplast development Cell expansion and division in shoots Root growth Pollen tube elongation+growth Net increase in CO2 uptake Increased carbohydrate and amino acid production

Growth of auxiliary root network


2018 Strawberry Results

Holden Research and Consulting, Oxnard, CA


- July 16 planting date
- 18 pickings Oct 2nd Dec 5th
- 50 g/ac Bio Seed + 16 oz/ac Vitazyme in drench
- 5 Foliar Vitazyme applications (every 3 weeks)
- Treated and control blocks received NPK applications
- Program cost: \$65.60

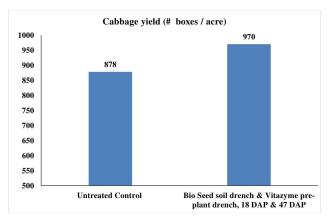

Results

Programs	Total marketable 8lb trays/acre	Total Net returns/acre	% Marketable berries	Net profit/acre
Grower's standard	1191 b	\$7800	62.0 b	
Bio Seed + Vitazyme	1529 a	\$10,516	66.1 a	\$2650
	+ 338	+ \$2716	+ 4.1	

Holden Research and Consulting - David Holden

Holden Research and Consulting - David Holden

Means followed by the same letter do not significantly differ (P=.10,NDMRT)


2018 Cabbage Results

Holden Research and Consulting, Oxnard, CA

- Oct 11 planting date
- Harvested Jan 4, 2019
- 400 lbs 6-24-24, followed by AN 20/ CAN 17
- 50 g/acre Bio Seed + 16oz/acre Vitazyme in drench at planting
- Foliar sprays of Vitazyme at 18 and 47 DAP

Results

Programs	Marketable head weight (g/head)	# 50 lb Boxes/acre	Tons/acre	Added Income	Net Profit
Grower's Standard	784.2 b	878 b	21.95		
Bio Seed + Vitazyme	886.3 a	970 a	24.25	\$2252	\$2208
	+ 102.1 g	+ 92	+ 2.3		

Improving Agriculture From the Ground Up®

Tristan Hudak agbioinc.thudak@gmail.com 585-455-7913

