In-Season Use of Liquid Organic Fertilizers

Richard Smith, University of California Cooperative Extension Monterey County Joji Muramoto, University of California Santa Cruz

Liquid Organic Fertilizers

- Most of the traditional liquid materials are made from fish wastes, grains and other materials such as guano
- They have specific properties that make their use attractive to growers
- They can be injected into drip systems which is of great interest in long-season strawberry production where the use of plastic mulch precludes being able to apply fertilizer later in the cropping cycle

Liquid Organic Fertilizers

- Tim Hartz did a study published in 2010 that looked at the mineralization characteristics of three commonly available material back then:
 - Fish waste, seabird guano (6-1.3-1)
 - Soy meal, plant extracts (4-1.6-1.6)
 - Grain fermentation (2.6-2.8-2.3)

Nutrient Composition

Parameter	Fish waste, seabird guano	Soy meal, plant extracts	Grain fermentation
Total Nitrogen	6.0%	4.0%	2.6%
Particulate-N ^a	0.5%	0.7%	0.6%
Particulate-N ^a (percent of total)	8%	17%	23%

a – particles that would not pass through No. 4 filter paper

Nutrient Composition

Parameter	Fish waste, seabird guano	Soy meal, plant extracts	Grain fermentation
Total Nitrogen	6.0%	4.0%	2.6%
Ammonium-N	1.3%	0.5%	0.2%
Nitrate-N	<0.1%	0.7%	0.2%
Total mineral (percent of total)	22%	30%	15%

Nutrient Composition

Parameter	Fish waste, seabird guano	Soy meal, plant extracts	Grain fermentation
Carbon:nitrogen	1.6	3.4	6.0
Total Phosphorus	0.6%	0.7%	1.2%
Total Potassium	0.9%	1.4%	1.9%

The same trends were evident at 77 °F with only small increases in N availability

Apparent Recovery of Fertilizer Nitrogen

Percent of Nitrogen Applied Recovered in Fescue Grass Tops

Fertilizer	2 weeks	4 weeks
Fish/guano	39	60 ^a
Soy meal	22	38
Grain ferment	20	36
Ammonium sulfate	25	39 ^a

a – Higher N uptake than the ammonium sulfate may have been due to denitrication of AMS that occured in pot culture; also the P and K in the fertilizer may have improved growth

- The slower N availability of the plant-based suggests more complex forms of N
- The liquid materials released faster than equivalent dry materials due to smaller particle size and higher initial N

Costs¹ of Liquid Organic Fertilizers

Material	Туре	Cost/lb of Nitrogen
5-1-2	Liquid – Fish, corn	\$12.10
4-1-3	Liquid – Fish	\$13.30
14-0-0	Liquid – Soy protein	\$18.50 - 35.70
4-4-2	Dry – Poultry manure, feather and meat&bone	\$4.20

1 – cost can vary depending on quantity purchased

Liquid Organic Fertilizers

 A portion of liquid organic materials are soluble but a portion is made up of suspended particles

Liquid Organic Fertilizers

- As a result of suspended solids in the organic fertilizers, plugging of drip irrigation systems commonly occurs
- Mark Gaskell, noted that systems can plug with just 4-6 weeks of fertigation
- Plugging causes loss of uniformity of the drip system causes many issues for the field

N Supply: Need of In-season N applications

- In-season band application and cultivation with organic pelleted or milled fertilizer...impractical under plasticulture CA strawberry systems
- Fertigation: liquid organic fertilizer applications via drip tapes are popular among organic strawberry growers in CA....but some issues

Anecdotal data for poor fertigation performance

- "Small plants" and lower yields relative to conventional fields
- Rapid plugging of system filters
- Little or no effects on soil N or yield from varying rate field trials
- Early deterioration of distribution uniformity
- Low tissue N test regardless of fertigation in organic strawberries

Field trails to quantify N applied via fertigation with organic fertilizer materials

(Courtesy of Mark Gaskell, UCCE San Luis Obispo)

Total nitrogen passing emitters (Ib/A) during 1 hr fertigation (injection below filter)

Total nitrogen passing emitters (Ib/A) during 1 hr fertigation

Other aspects of Injecting Liquid Organic Fertilizers

- Some drip tape manufacturers recommend special attention when using organic fertilizers
- In addition to the suspended particulates, there are interactions between the injected materials and microorganisms living inside drip systems which can create bacterial slimes which can cause further plugging

Other aspects of Injecting Liquid Organic Fertilizers

 Manufacturers recommend letting the fertilizer to sit in a tank for 7-10 days to allow the suspended particles to settle out to reduce the risk of plugging

Hydrolyzed Protein Fertilizers

Richard

• The fertilizer is produced from soybean meal, a co-product from soy oil production

- The fertilizer is produced by protolytic enzyme (protease) hydrolysis to reduce proteins to small-size, water-soluble, nitrogen-containing compounds including protein, peptides, amino acids, amines and ammonia
- The resulting fertilizer has a total nitrogen content between one and thirteen percent
- The product commonly used is a 14-0-0

One Evaluation of 14-0-0

- In 2018 BioLink N14 was included in a fertilizer trial of conventional fertilizers
- 80 lbs N/A were applied to experimental treatments
- Standard applied in 2 40-lbs N/A apps (UN32)
- BioLink applied in 8 10-lbs N/A apps (due to the lower solubility)

Fertilizer Application Madness

14-0-0 Evaluation

Treatment	Yield	Mean	Dry	Biomass	Biomass
	T/A	Head	Biomass	%N	Lbs N/A
		lbs	lbs/A		
Standard*	25.8	1.65	3024	2.9	87
BioLink N14	24.3	1.55	2848	3.0	84
Untreated	17.0	1.09	2365	2.1	49

14-0-0 Summary

- In one trial, 14-0-0 performed well in comparison with a standard fertilizer treatment
- This material may be capable of overcoming the inefficiencies of other organic liquid fertilizers in drip irrigation applications
- The improved efficiencies may offset the higher cost

