Mineral Deficiencies, Toxicities, Diagnosis, and Corrections

Phoebe Gordon, Ph.D.

Orchard Systems Advisor, Madera and Merced Cos. University of California Cooperative Extension

What is an essential nutrient?

- A component of plant structures, or involved in plant metabolism, whose absence results in:
- Cell death
- Severe abnormalities
- An inability to complete its life cycle (successfully reproduce)

What are the essential nutrients?

- Macronutrients:
 - Primary
 - Nitrogen

- Secondary
 - Calcium
 - Magnesium
 - Sulfur
- Other:
 - Carbon
 - Hydrogen
 - Oxygen

- Micronutrients:
 - Iron
 - Manganese
 Boron
 Conner
 Zinc
 Niotypdenum
 Nickel

Nutrient Mobility

- Soil mobile
 - Nitrogen (NO₃⁻)
 - Sulfur
 - Boron
- Soil immobile
 - Phosphorus
 - Calcium
 - Magnesium
 - Potassium: mobility dependent on soil texture
 - Zinc
 - Manganese
 - Copper
 - Iron

- Plant mobile
 - Nitrogen
 - Phosphorus
 - Potassium
 - Magnesium
- Plant immobile
 - Boron: species dependent
 - Sulfur
 - Calcium
 - Zinc
 - Manganese
 - Copper
 - Iron

Nutrient Uptake in Plants

- Roots are taking up nutrients (generally) when leaves are on the trees
- Roots have a limited ability to take up nutrients in saturated conditions
- Roots can only take up nutrients from the soil solution
- Roots can only explore a tiny proportion of the soil surface area

Cation Exchange Capacity

- The Cation Exchange Capacity (CEC) is the soil's ability to hold onto positively charged ions
- Dependent on the amount and type of clay as well as organic matter
- Inherent property of soils
- The size of the CEC determines how many cations (nutrients) your soil can hold

Cation Exchange Capacity

- NH₄⁺
- K+
- Mg²⁺
- Ca²⁺
- Na⁺
- H⁺
- Al³⁺
- Other cations

- Anything positively charged can bind to the CEC
- Cations are not permanently bound to the CEC
- Soils with large CECs can hold more nutrients than soils with small CECs

Nutrient Availability in Soils - pH

Figure 24.1 Effect of soil pH on relative availability of plant nutrients. A broad bar indicates high relative availability while a narrow bar indicates low availability.

- Nutrient availability is pH dependent
- The greatest availability of nutrients is between pH of 6 and 7.5

Potassium

- Found in the soil in:
 - Soil minerals mica, e.g.
 - Adsorbed to CEC
 - In the soil solution
- Taken up as K+
- Used by the plant in:
 - Involved in plant water status maintenance
 - Activates enzymes

Potassium

Copyright @ 2004 Regents of the University of California

- Mobile in walnuts
- Pale older leaves
- Leaf edges fold up, curl in
- Leaf undersides develop grey cast
- Necrotic spotting on margins
- Leaf size, shoot growth reduced
- Nut size reduced

Potassium Fertilization

- 35-40 lbs K removed with 1 ton nuts
 - Only 12 lbs removed if hulls are returned to the field
- Fertilization only needed if deficiency symptoms present, or if growing in sandy or K fixing soils
- In sandy soils
 - Band, drill or fertigate 400 lbs/acre of K (for example, 900 lbs K₂SO₄)

Figure 3. The soils of the Central Valley of California are primarily derived from granitic material from the East and sedimentary material from the West. Potassium-fixing soils are typically associated with granitic (igneous intrusive) parent material.

Slide credit: J. Caprile

Pettygrove et al, Better C

Potassium Fertilization

- 35-40 lbs K removed with 1 ton nuts
 - Only 12 lbs removed if hulls are returned to the field
- Fertilization only needed if deficiency symptoms present, or if growing in sandy or K fixing soils
- In sandy soils
 - Band, drill or fertigate 400 lbs/acre of K (for example, approx. 900 lbs K₂SO₄)
- In K fixing or clay soils
 - Band an initial application of 650 lbs K (for example, approx. 1500 lbs K₂SO₄)
 - Continue yearly maintenance applications of 200 lbs K/acre (approx. 400 lbs K₂SO₄ for example) until deficiency is remedied

Zinc

- Found in the soil:
 - Adsorbed and bound to other compounds (notably CaCO₃)
 - In the soil solution (in very low concentrations)
- Taken up as Zn²⁺
- Used by the plant in:
 - Enzyme catalyst for more than 300 enzymes
 - Involved in auxin biosynthesis

Zinc

- Immobile in walnuts
- Delayed opening of buds
- Small, chlorotic tufts of leaves, small nuts
- Interveinal chlorosis
- Wavy leaf margin
- Terminal dieback
- Increased oxidation in nuts

Zinc

Photo: B. Beede

Zinc Fertilization

- Soil applications
 - Trench 5-10 lbs ZnSO₄ per tree
 - Inject 5-20 gallons ZnSO₄ sulfate solution (1 lbs ZnSO₄ per gallon water) into the root zone
 - Broadcast 1-5 lbs zinc chelate pre-irrigation
 - Trench 10 lbs ZnSO₄ per tree and cover with 5 lbs sulfur in high pH soils
- Foliar applications
 - Mix 1-2 lbs of ZnSO₄ or zinc chelate in 100 gallons of water
 - Application rate should be 2-4 lbs Zn/acre
 - First application: just post bloom, when new growth is 6-10 inches long
 - Repeat a second or third time in 2-3 week intervals

Boron

- Found in the soil:
 - Adsorbed to clays, metal oxides, and organic matter
 - In the soil solution
- Taken up as B(OH₃)
- Used by the plant in:
 - Structural integrity of cell walls
 - Membrane function
 - pollination

Boron

Photo: P. Brown

- Weak growth
- Short internodes
- Misshapen leaves
- Terminal dieback
- Low yields

Boron Fertilization

- Soil application
 - Broadcast 50-75 lbs Borax per treated acre
- Foliar application
 - spray a mixture of 1 lbs Solubor per 100 gallons of water
 - Timing can be any time of the year, but best done during delayed dormancy or in the early growing season
 - Spraying during bloom can negatively affect pollen movement and flower health

Boron Toxicity

- Necrosis of the leaf tip and margins
- That appears in mid-late summer as levels accumulate in leaves
- Leaf curl and scorching of the entire canopy in severe cases

Boron Toxicity

- Switch to a low boron water source
- Leach from root zone
- Use tolerant rootstocks
 - Black most tolerant
 - English least tolerant
 - Paradox is in between
- Plant a tolerant crop

Chloride Toxicity

- Symptoms similar to boron toxicity
- Switch to higher quality water
- Leach (easily removed)
- Plant tolerant rootstocks
 - Black most tolerant
 - English least tolerant
 - Paradox in between
- Plant more tolerant crops

- Pre-planting soil sampling
 - Necessary for accurate picture of orchard
 - Samples should be to reasonable depth of rooting zone
- Routine soil sampling
 - Good for monitoring K, B, Na, Cl

- Sample 0-12 inches, discarding surface debris
- Pull samples from ½ to ¾ of the wetted radius

- Sample 0-12 inches, discarding surface debris
- Pull samples from ½ to ¾ of the wetted radius
- Pull 8 to 12 subsamples for each sample
- Mix them WELL and send in one pound to a lab

- Don't combine soil types
- Don't combine irrigation blocks
- Don't combine good and bad areas

Leaf Sampling

- Test yearly in July
- Useful for monitoring all nutrients
 - Exception: recent foliar micronutrient sprays
- Select <u>terminal</u> leaflet from 30-50 leaves on 20-30 trees
 - Don't combine symptoms
 - Don't combine soil types
 - Don't combine irrigation blocks
 - Don't combine varieties

Leaf Sufficiency Values

Nutrient	Deficient	Sufficient	Тохіс
Nitrogen	< 2.1%	2.2 – 3.2%	N/A
Potassium	< 0.9%	> 1.2%	
Boron	< 20 ppm	36 – 200 ppm	> 300 ppm
Zinc	< 18 ppm		
Sodium			> 0.1%
Chloride			> 0.3%

Questions?

Phoebe Gordon, Ph.D Madera and Merced Counties <u>pegordon@ucanr.edu</u> 559-675-7879 ext. 7209 www.growingthevalleypodcast.com