Master Gardener Training Part 1: An Introduction to the Insects Jan O. Washburn March 22, 2017 1

Outline - Introduction to the Insects

Master Gardener Training, April 15, 201

- Part 1: An Introduction to the insects
 - What is an insect?
 - The life history of insects
 - Insect flight
 - The success of beetles
 - Insect mouthparts and feeding strategies
 - Coevolution of insects and plants
- Part 2: Insect Population Biology
 - Why are insects eating my garden?
 - Life history strategies of plants and animals
 - Food webs, mortality and population ecology
 - Predators and the evolution of life
 - The concept of biological control
- Part 3: Common Insects of Mendocino County

Learning Objectives - Entomology

Entomology

Richard H. Molinar, Carlton S. Koehler, and L. W. Barclay

- Insects and Insect Relatives 150
- Common Insect Relatives in the Home and Garden 151 Insect Growth and Development 153
 - Insect Feeding 154
 - Insect Classification and Identification 154
 - Common Insects in the Home and Garden 156
 - Insect Movement and Spread 162
 - Insect Outbreaks 162
 - Insect Distribution 163
- gnosing Plant Problems Caused by Insects and Mites 163
 - Principles of Integrated Pest Management 164
 - Major Methods of Controlling Insect Pests 165
 - Bibliography 168

NING OBJECTIVES

Understand basic insect and mite pests in the home garden in California.

Today's Topics

- Learn about basic insect structure (anatomy), life cycles, and distribution.
- Become familiar with the major groups of insects in the home garden.
- Learn basic information about diagnosing plant problems caused by insects and mites
- Learn about methods and rules for controlling insect pests and basic concepts of integrated pest management (IPM).

This chapter is intended to be used in conjunction with *Pests of the Garden and Small Farm* (Flint 1998) and *Pests of Landscape Trees and Shrubs* (Dreistadt 1994). Additional insect pest management and diagnosis information appears in chapters 8, 10, and 22 of this book.

Insect Dominate Terrestrial Life

About 1/3 of all described plant and animal species on earth are insects.

How Living Organisms Are Classified

Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Hymenoptera (Bees, Wasps & Ants) Family: Apidae Genus & species: *Apis mellifera* Common name: Honey Bee

What Makes an Animal an Insect?

Insect breathe with a tracheal system

Millipedes, centipedes, spiders and "pillbugs" are arthropods but <u>NOT</u> Insects

Pillbugs

Spider

Centipede

Strong jaws & poison glands

The Major Insect Orders

- Odonata: Dragonflies & damselflies
- Isoptera: Termites
- Neuroptera: Lacewings...
- Hemiptera: "True" Bugs
- Homoptera: Leafhoppers, cicadas...
- Orthoptera: Grasshoppers
- Coleoptera: Beetles
- Diptera: Flies
- Hymenoptera: Bees, wasps, ants...
- Lepidoptera: Butterflies

Why are we so different from insects? A Major Split in the Animal Lineage ~ 600,000,000 Years Ago

The closest relative we share with insects lived 600,000,000 years ago.

How Does Natural Selection Work and Life Evolve?

Evolution = change in gene frequency over time

10

Predation has Shaped the Appearance of Insects

- Cryptic coloration makes the insect blend into the background
- Physical defenses such as hairs & spines

• Warning coloration advertises that the insect is poisonous (or not)

Bright colors & eyespots can startle a wood-be
predator

Pollution from the "Industrial Revolution" caused a shift in the proportions of light and dark pepper moths in many populations.

Evolutionary Plasticity of Insect Appendages

A single mutation in the fruit fly genome can transform an antenna into a leg.

Diversity of Beetle Antennae

The Antennae of Beetles

Antennal Structure is Useful for Beetle Identification

Longhorn Beetle (Cerambycidae)

Japanese Beetle (Scarabaeidae)

13

Abdominal Structure of the Hymenoptera

- Petiole narrow constriction between the thorax and abdomen
- Development of the petiole and adaptations of abdominal glands were a major evolutionary developments for the advanced hymenoptera
- Flexibility of abdomen allowed niche expansion by the hymenoptera

The Life History of Animals and Plants

Strategies for Survival and Persistence

Life History = lifetime pattern of growth, development & reproduction

Orb Weaver

Black Widow

Crab Spider

Jumping Spider

Wolf Spider

Insect Metamorphosis - Exploitation of Different Resources by Different Life Stages

Incomplete Metamorphosis Hemimetabolous Complete Metamorphosis Holometabolous

Insects with "Complete" Metamorphosis (Holometabolous)

Insects with "Incomplete" Metamorphosis (Hemimetabolous)

Dragonflies Odonata

Termites Isoptera

Grasshoppers Orthoptera

True Bugs Hemiptera

Names for Immature Insects

- Larva = immature form of an insect (with <u>complete</u> <u>metamorphosis</u>) after emerging from the egg (a.k.a. instar or stadium, caterpillar)
- Nymph = immature form of an insect (with <u>incomplete</u> <u>metamorphosis</u>) after emerging from the egg (a.k.a. instar or stadium)
- Naiad = immature form of an <u>aquatic</u> insect (with <u>incomplete</u> <u>metamorphosis</u>) after emerging from the egg

Insect Larvae Have Diverse Forms

Mosquito Larvae

Insect Wings - Key to Success

- Insects are believed to have left the aquatic environment in search of new food sources.
- Why are there virtually no insects in the marine environment? Most likely, the Crustacea had filled all of the niches before insects evolved.

The Evolution of Insect Wings

21

Wing Evolution

- Wings are cumbersome when not in use; hence selection for reduction in wing size
- Speed & maneuverability more important than lift
- One pair of wings more efficient aerodynamically

Still works fine!

22

The Scales of Butterflies & Moths

Provide Protection and Warmth

Functionally two wings

Spider predation and the evolution of scales?

Development of Wing Patterns in the Lepidoptera

- Perfectly 2 dimensional left to right
- Three general wing areas (basal, central and border)
- Pattern evolution occurs by developmental changes (pigments, displacement, distortion, expansion and contraction and multiplication of elements)
- Promotes rapid & spectacular diversity

How Do Beetles Store their Wings?

How do insects fold and unfold their wings?

AN ACTIVITY BOOK

Reduced Venation

Compared to other Insects, Beetles are Lousy Flyers

Beetles Are the Most Diverse Life Form on Earth

The creator "had an inordinate fondness for beetles"

J.B.S. Haldane (1892 - 1964) One of the founders of population genetics

- ~ 350,000 described species: ~10,000 in CA
- 1 in 4 described species on earth is a beetle
- ~ 1 in 15 described species on earth is a weevil

The Beetles – Dressed for Success

- Compact, heavily armored bodies that resist abrasion and desiccation
- Dorso-ventrally flattened bodies allow entry into tight spaces (e.g. under bark)
- Retractable appendages for protection
- Wings are protected and housed in a large subelytral space

Dorso-ventrally Flattened Bodies

Heavily armored Beetle Larva

Strong Exoskeleton and Retractable Appendages

Beetle Habitats – They are Everywhere

Deserts

Leaf Litter

Flowers

Early in Earth's History Beetles Radiated into Many Niches

Predaceous Diving Beetle (Dytiscidae)

Metallic Wood-boring Beetles (Buprestidae)

Insect Mouthparts - The Basics

The oldest insect fossil (*Rhyniognatha hirsti*) ~ 400,000,000 years old

Terrestrial plant life as a food source was the driving evolutionary force behind insect colonization of land

The earliest insects had chewing mouthparts

Apodemes*

Chewing and Sucking Mouthparts Adaptations for Solid & Liquid Foods

Insects with Chewing Mouthparts Feeding on Leaves, Shoots, Flowers, Stems & Roots

Insects with Sucking Mouthparts Feeding on Phloem, Xylem & Plant Cell Juices

Adult Butterflies & Moths

Adaptations for Blood Feeding Mosquitoes & Black Flies

Mosquito - taps into capillaries

Larval black flies filter feed in aquatic habitats

Adult females feed on blood

Black Fly - slashes skin and laps blood

Convergent Evolution in Insect Predators

Praying Mantis

Snake Fly

Mantis Fly

PROTECTING THE PREDATOR

- prey capture with extended raptorial front legs
- elongated thorax places soft abdomen away from prey

Mantis

Mantis Shrimp
The Concept of Coevolution

Coevolution = joint evolution of two or more non-interbreeding species in which the evolution of one species is partially dependent on the evolution of the other ("gene for gene evolution")

Coevolution of Primates and Lice

Coevolution of Ants & Fungi

Phylogenetic Tree of Ants & Fungi

39

Insects that Mimic Plants Evidence of a Long and Intimate Relationship

The Fossil Record and Evolution of Insects and Plants

- Leaf insect fossil
- Estimated at 47,000,000 years old
- Virtually same morphology in living leaf insects
- Helps date the origins of mimicking host plant for protection

- Sungless bee trapped in amber
- Estimated at 76 84,000,000 years old
- Only unambiguous orchid in the fossil record
- Explains distribution of vanilla orchid...

Evolution of Insects & Flowering Plants

42

Types of Insect Plant Interactions

Insects Exploit Plants

- Food and water
- > A place to live
- > Protection from Predators
 - Camouflage
 - Poison

Plants Exploit Insects

- Pollination
- Seed dispersal
- Protection
 - Ants
 - **Parasites**
 - **Predators**

Plant Host Range Varies Among Insects

Smith's Blue

Monophagy One host species

Monarch

Oligophagy Several host species

White Lined Sphinx

Polyphagy Many host species

Specialist

Generalist

Pollinator Syndromes

Mutualistic Relationships between Higher Plants & Animals

					Pollinator			
Trait	Bats	Bees	Beetles	Birds	Butterflies	Flies	Moths	Wind
Color	Dull white, green or purple	Bright white, yellow, blue, or UV	Dull white or green	Scarlet, orange, red or white	Bright, including red and purple	Pale and dull to dark brown or purple; flecked with translucent patches	Pale and dull red, purple, pink or white	Dull green, brown, or colorless; petals absent or reduced
Nectar guides	Absent	Present	Absent	Absent	Present	Absent	Absent	Absent
Odor	Strong musty; emitted at night	Fresh, mild, pleasant	None to strongly fruity or fetid	None	Faint but fresh	Putrid	Strong sweet; emitted at night	None
Nectar	Abundant; somewhat hidden	Usually present	Sometimes present; not hidden	Ample; deeply hidden	Ample; deeply hidden	Usually absent	Ample; deeply hidden	None
Pollen	Ample	Limited; often sticky and scented	Ample	Modest	Limited	Modest in amount	Limited	Abundant; small, smooth, and not sticky
Flower Shape	Regular; bowl shaped – closed during day	Shallow; have landing platform; tubular, c	Large bowl- like, Magnolia	Large funnel like; cups, strong perch support	Narrow tube with spur; wide landing pad	Shallow; funnel like or complex and trap-like	Regular; tubular without a lip	Regular: small and stigmas exerted

Master Gardener Training Part 2: Insect Population Biology Jan O. Washburn March 22, 2017

Part 2: Insect Population Biology

- Part 1: An Introduction to the insects
 - What is an insect?
 - The life history of insects
 - Insect flight
 - The success of beetles
 - Insect mouthparts and feeding strategies
 - Coevolution of insects and plants
- Part 2: Insect Population Biology
 - Why are insects eating my garden?
 - Life history strategies of plants and animals
 - Food webs, mortality and population ecology
 - Predators and the evolution of life
 - The concept of biological control
- Part 3: Common Insects of Mendocino County

Why are there Insect Outbreaks in my Garden?

- 97% of all insects are either harmless or beneficial
- Insect outbreaks are "natural" phenomena
- Most gardens are "artificial" and inherently less "stable"
- **Tolerance for insect damage is often low**

Pest Population

Economic or Aesthetic Threshold

How do Insect Populations become Pests?

Exponential growth of Reindeer on St. Paul Island **Exponential = No limits to growth**

Logistic = Growth is limited

Exponential Growth of Insects

- Small size
- High reproductive rate
- Unlimited resources
- Rapid response to environment

Human Population from 1 A.D. until Present

Survivorship Curves in Nature

Mortality Can Be Density Independent or Density Dependent

Mortality can be either compensatory or additive.

Density Independent

Density Dependent

6

- Density Independent Mortality is independent of population number or density
- **Density Dependent Mortality depends on population number or density**

Food Webs - The Pyramid of Numbers Organization of Communities into Trophic Levels

Producers, Primary & Secondary Consumers

Detritus Food Web

7

Population Cycling in Nature The Interdependence of Predators and Their Prey

Three-way interaction of woody vegetation, snowshoe hare and lynx

Upsetting the "Balance of Nature" Invading Species

Gypsy Moth

Chestnut Blight

9

European Starling

Periodic Cicadas & Predator Satiation

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Magicicada septendecim 17 year cicada

California Cicada

Periodic Cicada life cycles are 3, 5, 7, 11, 13 & 17 years

Why these numbers?

Cicada Order: Homoptera Family: Cicadidae

- Large, conspicuous insects
- Membranous, transparent wings
- Xylem feeding as nymphs (and sometimes as adults)
- Mass, synchronized emergence of adults
- Sound production by tympanic membranes (ventriloquists!)
- May cause economic damage from root feeding & egg laying

Cicada Oviposition Damage

Insect Predators Maintain Diverse Plant Communities

Control (left) and Treatment (Right)

Insects that eat seeds are called predators because they kill entire organisms

- Treatment (Right) insecticides applied for 8 years, preventing outbreaks of the dominant herbivorous beetle
- This resulted in goldenrod overtaking other plant species and reducing plant species diversity

Controlling Pests in Your Garden

Density Dependent - Level of mortality depends on population number or density

Making Rationale Pest Control Decisions

What is Integrated Pest Management (IPM)?

A pest management strategy that is: sensible, effective & environmentally safe

16

When to Give Up - Fuschia Mites

Solution: Do not plant cultivars that are susceptible

Pheromones and Insect Control

Pheromone receptors on Moth Antennae

- Pheromones are extremely host specific
- Pheromones are widely used in crop protection

Pheromones are widely used by social insects

Male Monarch

Female Monarch

How Are Pheromones Used in Pest Control?

- Used to monitor activity of adult pests (for detection and size of infestations)
- Used to detect medfly, gypsy moth, LBAM and many other pests of agriculture and silviculture
- Used for control by disrupting mating

Predators and Parasitoids For Pest Control

Egg Parasitoid Specialist Parasite

Praying Mantis Generalist Predator **20**

Manipulating Natural Enemies in Your Garden

21

Books For Insect Identification

- Quick reference for the good and bad insects
- Extensive and accurate pictures
- Species are arranged by order
- Scientific names provided with brief range description
- Major ecological features mentioned
- A good place to get a name for a web search

Other Books to Consider for Your Library

PETERSON FIELD GUIDES

Insects

Donald J. Borror/Richard E. White

California Insects

Jerry A. Powell and Charles L. Hogue

- Organisms that feed on animal tissues (or whole plants = seeds)
- Free-living and usually larger than their prey
- Consume some or many prey
 over their life
- Many feed on a wide range of insect species

Predators

Ladybird Beetles ("Lady Bugs") Family: Coccinelidae

Pupa

• Larvae and adults prey on soft bodied insects

- Many species in CA, both native and introduced
- Voracious predators and effective control agents,
- Over winters in large aggregations
- Commercially available
- Best used on individual netted plants

Coleoptera: Carabidae - Ground Beetles and Tiger Beetles

Common Black Calosoma

Ground Beetle Eating a Slug

- Among the most commonly encountered beetles in CA
- Third largest family of beetles in CA with ~ 700 species
- As the name suggest, most are ground dwelling
- Most are predatory, feeding on other insects or snails
- Most can run fast, and many expel noxious compounds from the anus
- Tiger beetle larvae develop in sandy soils, and adults are fast flyers

Larva

Tiger Beetles

Lacewings (Families: Chrysopidae & Hemerobiidae)

Green Lacewing

Larva

Egg

Brown Lacewing

- Larval and adults stages voracious predators
- Prey primarily on soft bodied insects
- Eggs laid on stalks to avoid cannibalism
- Larvae may cover themselves with camouflage

Neuroptera: Raphididae - Snake Flies

- Larvae and adult are voracious predators of smaller insects
- Larvae are predators in porous rotten wood & leaf litter
- Relatively rare in the garden; look for them in spring and early summer
- Habitat is typically woodland; often found on vegetation (buckeyes & oak in CA -

Odonata - Dragonflies and Damselflies

Dragonfly Naiad

- Wings out at rest W Immature forms (Naiads) are v
- Damselfly Wings folded over back
- Immature forms (Naiads) are voracious predators in freshwater habitats; feed on small invertebrates, fish and tadpoles
- Adults are accomplished aerial predators and often long lived; males frequently territorial
- After emergence, adults spend time away from water, often over fields & garden

Emerging Dragonfly

29

Reproductive Biology of Dragonflies and Damselflies

Dragonfly

Copulation - The "Wheel Position"

Oviposition in Tandem

Mantidae - The California Mantis (Stagmomantis californica)

Brown Morph

Green Morph

Egg Case

- All stages prey are predatory
- Young feed in vegetation; climb as they age
- Adults feed almost exclusively on bees and wasps
- Adults die before winter; eggs overwinter
- **Easily introduced into the garden**

Orthoptera: Stenopelmatidae - Jerusalem Cricket "Potato Bug" or "Ninas de la Tierra"

- Common ground dwelling insects in northern CA
- Large and capable of delivering a nasty bite
- Omnivorous and opportunistic predator; will feed on any animal it can subdue
- Roll over when disturbed and wave their spiny legs
- Commonly found under objects and in subterranean burrows

Reduviidae: Ambush Bugs & Assassin Bugs

- Common on flowers, but may be well camouflaged (Ambush bugs)
- Nymphs and adults prey on small insects
- "Generally" do not bite when handled

Syrphidae: Hoverflies

- Larvae of some species live on plants & feed on aphids
- Adults commonly seen nectar feeding on flowers
- Many mimic bees and wasps

Diptera: Syrphidae - Hoverfly

Syrphid Fly

35

Ascilidae: Robber Flies

- Larvae in soil or wood, some predaceous
- Adults common on vegetation
- Adults are aerial predators, often taking prey much larger than themselves

Cecidomyiidae: Aphid Midges

- Adults are small (2-3 mm) mosquito-like flies
- Larvae efficient generalist aphid predators
- Larva may consume up to 100 aphids to complete the life cycle
- Life cycle typically 3 6 week; multiple generations per year
- Very effective natural enemies found in a wide variety of crops

37

Vespidae: Paper Wasps, Yellow Jackets & Hornets

YELLOW JACKET 16 mm F: Larva eats insects

HORNET 20 mm F: Larva eats insects

PAPER WASP 25 mm F: Larva eats insects

Potter Wasp

Bald Faced Hornet

- Adults are omnivores; consume many kinds of insects
- Common on flowers
- Typically black with yellow markings
- Some are social, most are not
- Both queens and workers sting
- Overall beneficial, but often a pain to deal with

Yellow Jackets

Formation of Yellow Jacket Nests

nest entrance

39

Spiders - Effective Generalist Predators

Orb Weaver European Import

Orb Weaver Native

Wolf Spider Ground Predator

Long Jawed Orb Weaver Imported

Crab Spider Ambush Predator

Jumping Spider Substrate Predator **40**

Parasites – "Parasitoids"

- Most insect parasites kill their hosts ("Parasitoids")
- Most important group of insect natural enemies
- All insect stages attacked
- Abundant in nature and very common in the garden
- Larvae attack a wide variety of insects
- **Primarily wasps, but includes some flies**

Bombyliidae: Bee Flies

Nectar Feeding

- Adults often resemble bees
- Adults are common on flowers
- Some are pollinators
- Larvae are parasitic on a wide variety of insects

Larvae on Tiger Beetle Larva

Sphecidae: Mud Daubers & Thread-Waisted Wasps

c m

- Adults often seen on flowers feeding on nectar, pollen and insects
- Parasitize all major insect orders
- Prey are paralyzed and returned to the nest
- Nest in ground burrows or build mud nests
- Young feed as parasites on paralyzed host
- Important biological control agents in nature

Chrysididae: Cuckoo Wasps

- Small wasps (< 12 mm) that are metallic green or blue in color
- Body usually coarsely sculptured
- Larvae are external parasites of the larvae of other bees & wasps
- Some are egg parasites of walking sticks
- Frequently seen visiting flowers in the garden

Pompilidae: Spider Wasps

- Dark blue or black with colored wings; recognized by nervous wing twitch
- Adults hunt spiders, primarily on the ground
- Larvae are external parasites on paralyzed spiders

Braconidae: Braconids Wasps

- >2000 species in North America
- Adult wasps are small (< 15 mm)
- Most are parasitoids (similar to ichneumonids)
- All life stages (egg, larva, pupa & adult) of host are attacked
- Solitary & gregarious parasitoids
- Extremely beneficial insect

Ichneumonids - Ichneumonidae

The ichneumon Rhyssa has a very long ovipositor with which it can bore into wood and lay an egg on a wood wasp grub.

Hosts include larvae from several families of wood boring beetles

- > 3500 species in North America
- Adult wasps are variable in size
- Most are parasitoids, feeding either internally or externally
- Hosts include larvae of all major insect orders
- Extremely beneficial insects

Tachinid Flies - Family Tachinidae

- One of the largest families of flies
- Adults resemble houseflies with bristles
- Larval parasites
- Common parasitizing tent caterpillars
- Important biological control agents of many pests
- Common in gardens on flowers

Pathogens and Diseases

- Includes viruses, bacteria, protozoa &fungi
- Every species on earth is infected by one or more pathogens; insects are no exception
- Often responsible for dramatic changes in host populations (e.g., honeybees)
- Important regulators of natural populations
- Density dependent mortality factors

Viruses - Baculovirus & Iridescent Virus

- Baculoviruses infect lepidopteran larvae
- Host specific, fatal pathogens
- Liquify host at the end of pathogenesis
- Important natural control agents for gypsy moth and forest tent caterpillars
- Some commercially available

Iridescent Virus

Bacteria - Bti Formulations

Action of *Bacillus thuringiensis* var. *kurstaki* on caterpillars

- 1) Caterpillar consumes foliage treated with Bt (spores and crystalline toxin).
- Within minutes, the toxin binds to specific receptors in the gut wall, and the caterpillar stops feeding.
- Within hours, the gut wall breaks down, allowing spores and normal gut bacteria to enter the body cavity; the toxin dissolves.
- In 1-2 days, the caterpillar dies from septicemia as spores and gut bacteria proliferate in its blood.

What Can You Do to Enhance Natural Enemies in Your Garden?

- Diversify your garden. Physical complexity is key.
- Provide nectar and pollen sources for predators and parasites
- Plant for continual bloom throughout the growing season
- Don't be to fastidious about keeping the garden "clean"
- Tolerate some chewing; it's the sign of a healthy garden
- If a plant species is continually infested grow something else
- Introduce appropriate predators and parasites
- Avoid pesticide use

52

Websites of Interest

http://nature.berkeley.edu/~stevelew/cbcstuff/common_spiders/big_spi_quilt.html Common spiders of California

Website of Interest

http://www.entsoc.org/Pubs/Common_Names/index.htm - Entomological Society of America website with sanctioned common names

54

Website of Interest

http://bugguide.net/node/view/15740

Master Gardener Training Part 3: Common Insects of Mendocino County Jan O. Washburn March 22, 2017

Hemiptera: Gerridae – Water Striders

- Inhabit calm surface waters, a few species are found in the open ocean
- These are predatory insects that feed on invertebrates that fall into the water
- Ripples in the water are detected by sensory hairs on the front legs

Coleoptera: Gyrinidae - Whirligig Beetles

Physical Gill

the Water

- **Predators**
- Adults feed on insects trapped • on the water surface
- Aggregate on water surface to avoid predation
- **Capable of swimming** underwater

Larvae Are Aquatic and Predaceous

Coleoptera: Dytiscidae - Predaceous Diving Beetles

Sunburst Diving Beetle

- Predaceous adults and larvae are found in a variety of fresh water habitats
- Adults oval, streamlined (up to 33 mm)
- Hind legs are short, fringed and placed posteriorly; awkward on land
- Adults carry air under their elytra (physical gill)

Dytiscid Larvae

Homoptera: Cercopidae - Spittlebugs ("Froghoppers")

Isoptera: Subterranean Termites

Diptera: Tipulidae - Crane Flies

- ~ 15,000 described species in family
- Largest "flies" in California
- Often know as "mosquito hawks"
- HARMLESS INSECTS
- Larvae often in moist habitats
- Adults are often non-feeding; some feed on pollen/nectar

Hemiptera: True Bugs

Squash Bug

Box Elder Bug

- ~ 2000 species in family worldwide
- All are plant feeders (phloem)
- Many produce "repugnatorial secretions
- Bright colors advertise that the insect is distasteful or poisionous
Hempitera: Pentatomidae - Stinkbugs

- ~ 3000 described species
- "stink bug" is actually a complex of green & brown species/races//populations
- Most are plant feeders (phloem)
- Major pests of rice and crucifers
- All stages produce "repugnatorial secretions"

Hymenoptera: Tenthredinidae – Saw Flies

Pontania sp.

- Form leaf, petiole & leaf edge-roll galls
- Common on Willow (*Salix* spp.); several species on native snowberry
- Specific will clones attacked
- Usually one generation per year, but *Pontania californica* is active year round

What is a Gall?

A plant gall is a tumor-like growth of plant tissue produced by the host plant in response to the chemical and/or mechanical stimuli of another organism such as an insect, mite, fungus, virus, or bacterium.

Gall Structure

For insect induced galls, the gall most frequently serves as a brood chambers for the immature stages of the insect

Hymenoptera: Cynipidae – Gall Wasps

Cynipids have Complex &Variable Life Histories

Sexual Generation spring/ summer

Asexual Generation fall/ winter

Alternation of sexual and asexual generations

Hymenoptera: Calcidoideae

- Large group with >2200 species in North America
- Most are small to minute in size (0.5 3.0 mm) and common in the garden
- Recognized by reduced wing venation
- Often metallic & brightly colored
- Most are parasitic on eggs & larvae of other insects
- Hosts include coleoptera, diptera, leopidoptera, hymenoptera & homoptera

Hymenoptera: Andrenidae - Digger or Mining Bees

Nectar Robbing by Bees

Nectar Robbing by a Carpenter Bee

Many species of bees will "rob flowers" by climbing to the back of the flower (avoiding the reproductive parts) and harvesting nectar after chewing a hole in the corolla tube.

Head & Mouthparts of Typical Bee

Honeybee robbing pollen from a bumblebee

Hymenoptera: Megachilidae - Leafcutting Bees

- Moderate in size & stout in the body
- Females carry pollen on the ventral surface of the abdomen
- **Frequently nest in wood**
- Larvae of most feed on leaves provisioned by the adult
- Leaf damage is a common sight in California gardens

Hymenoptera: Mutillidae - Velvet Ants

- Females are wingless & resemble "hairy ants"
- ~ 450 species in North America
- Black with yellow, orange, red or white hairs
- Common ground insects, particularly in the arid west
- Poorly known life histories; those that are described are pupal parasites of wasps & bees
- FEMALES INFLICT A VERY PAINFUL STING!

Coleoptera: Chrysomelidae – Leaf Beetles

- One of the largest families of plant eating beetles
- ~ 40,000 species world wide; ~ 500 species in CA
- Most are specialists and feed on only one or a few closelyrelated plant species
- Larvae of most feed on live plant material and pupate in the soil
 - Many are economic pests, and some are useful for biological control of noxious weeds

Chrysomelid Larvae

Coleoptera: Rove Beetles - Staphylinidae

Rove Beetle Larva

Pictured Rove Beetle is a nocturnal species common in seaweed on the coast

- Largest beetle family in CA with ~ 1500 species
- Elytra very short
- Live in leaf litter and decaying plant material
- Most are predators of small arthropods
- May lift abdomen or release noxious secretions when disturbed

Coleoptera: Curculionidae - Weevils or Snout Beetles

- Largest animal family on earth with > 60,000 described species;
 ~ 600 in CA
- Most adults identified by their extended mouthparts
- Adults and larvae feed on live plants; specialize in feeding on nuts and seeds
- Larvae of many species burrow into stems
- Major economic pests, many with cosmopolitan distributions

Coleoptera: Buprestidae - Metallic Wood-boring Beetles

Golden Buprestid

Metallic Color and Bullet Shape

- Many species brightly colored and/iridescent
- Streamlined, bullet-shaped bodies with saw tooth antennae
- Among the most destructive wood boring insects
- Larvae are legless and feed on sapwood of branches, roots and trunk as well as heartwood
- Fast flying

Buprestid Larva

Coleoptera: Scarabaeidae - Ten-Lined June Beetle

- Common in California (except deserts)
- Larvae feed on roots
- Adults may feed on pine needles
- June/July on coastal prairie

Coleoptera: Silphidae - Carrion and Burying Beetles

Black Burying Beetle

Silphid Larva

- Feed on decaying plant and animal material
- Antennae sensitive to the odors produced by cadavers
- Burying beetles bury small mammals and birds
- Some adult burying beetles exhibit parental care

Mites

Some burying beetles carry mites that disperse on cadavers and eat fly eggs, reducing food competition for their young

Coleoptera: Lampyridae - Fireflies and Glowworms

Adult on California Glowworm

Wingless ♀ Glowworm

♀ California Pink Glowworm

- Elongated, flattened, soft-bodied beetles
- 18 species in CA, but none exhibit bio luminesce during flight
- Among CA species, adult 우우resemble wingless larvae
- Bioluminescent light organ on ventral surface of abdomen
- Larvae inhabit leaf litter; feed on snails, slugs and insects
- Adults are predatory or do not feed

Male *Photinus*

Coleoptera: Cerambycidae - Longhorn Beetles

Small Second / Antennal Segment

- Largest beetle found in CA
- ~ 20,000 species world wide: ~
 350 species in CA
- Most CA species are brown or black; many are nocturnal
- Larvae of most feed on live or dead plant material; most bore into plant tissues
- Important role in recycling dead
 wood
- Often observed on flowers
- Long antenna (usually has 11 segments with the second one small) notched into the eye

Antenna Attaches In Eye Socket

Lepidoptera: Saturnidae - Silkmoths

- Medium to very large in size
- Our largest Lepidoptera
- Adults are short-lived
- Adults do not feed
- Several diurnal species in CA

Ceanothus Silkmoth

Redwood moth

Ceanothus Silkmoth Larva

Lepidoptera: Sphingidae - Hawkmoths

Lepidoptera: Sphingidae - Hawkmoths

Tobacco Hornworm

White Lines Sphinx

Lepidoptera: Dioptidae - California Oak Moth

Phryganidia californica California Oak Moth

- Larvae feed primarily on live oak
- 2 or 3 generations per year
- Adults fly from spring until fall
- May defoliate mature trees completely
- Outbreaks occur about every 5 10 years

COMPANY DIRECTLY DECK

Lepidoptera: Arctiidae - Tiger Moths

- Family contains ~11,000 species
- Often brightly colored (tiger moths) and distasteful
- Larvae called "wooly bears"
- Larvae and adults of many species are diurnal

Cinnabar moth introduced into the US to control ragwort

Lepidoptera: Danaidae – Monarch Butterfly

No life stage of the Monarch can survive freezing temperatures.

Lepidoptera: Nymphalidae - Brush Footed Butterflies

- Many species vary from moderate to large
- Name derived from greatly reduced front legs
- Rest/Walk on four legs
- Larvae feed on many plant species

Buckeye

Painted Lady

Crescent

Red Admiral

Anglewing

Checkerspot

California Sister

Lorquin's Admiral

Zerene Fritilary

Lepidoptera: Pieridae - Whites, Sulfurs & Orangetips

- Small to medium in size
- Yellow or white background color
- Often sexually dimorphic
- Larvae feed on crucifers

Sara Orangetip

Spring White

35

California Dogface STATE INSECT OF CALIFORNIA

Checkered White

Alfalfa Butterfly

Cabbage White

Lepidoptera: Satyridae - Wood Nymphs

- Small to medium in size
- Almost all are brown with eyespots
- Common in woodlands and meadows
- Characteristic flight wings fully close
- Larvae feed on grasses

Common Wood Nymph

Lepidoptera: Hesperiidae - Skippers

- Small in size
- Wings held partially opened at rest
- Thick bodied and stout
- Characteristic skipping flight
- Larvae feed on grasses & sedges
- ~ a dozen local "Grass Skippers"

Dusky Wing Skipper

Checkered Skipper

Lepidotpera: Lycaenidae - Blues, Hairstreaks & Coppers

- Small, generally fly close to the ground
- Hairstreaks have tails and false eyespots
- Larvae are slug like; some are tended by ants
- Larvae of some eat ant larvae & pupae
- Great Purple Hairstreak feeds on Mistletoe
- Hairstreaks typically rest with wings folded

Purplish Copper

Gray Hairstreak

Acmon Blue

Bramble Hairstreak

Great Purple Hairstreak

Leopidoptera: Papilionidae - Swallowtail Butterflies

Anise Swallowtail

Polymorphic Anise Swallowtail Swallowtail Pupae

Pipevine Swallowtail

Osmeteria

Western Tiger Swallowtail

Pale Swallowtail

The Life Cycle of the Pale Swallowtail

The Pipevine Swallowtail

41

Redspotted Purple Palatable Mimic

Pipevine Swallowtail Adult & Larvae

Mimicry and the Pipevine Swallowtail

Unpalatable Monarch Palatable Vicery

Palatable Mimics – Eastern North America

Red-Spotted Purple

Eastern Tiger Swallowtail – Dark Form ♀

Unpalatable Pipevine Swallowtail

In Eastern North America, more than half a dozen butterfly species mimic the poisonous pipevine swallowtail to avoid predation.

Diana Fritillary - 📍

Dutchman's Pipe - CA Native

Dutchman' s Pipe - Aristolochia californica

- Flowers of the Dutchman' s Pipe attract and capture fungus gnats
- After pollination, flowers release pollen and allow flies to leave the flower

Fungus Gnat

Pipevine Swallowtail

Odonata - Dragonflies and Damselflies

Dragonfly Naiad

Dragonfly Wings out at rest

Damselfly Wings folded over back

- Immature forms (Naiads) are voracious predators in freshwater habitats; feed on small invertebrates, fish and tadpoles
- Adults are accomplished aerial predators and often long lived; ales frequently territorial
- After emergence, adults spend time away from water, often over fields & garden

Emerging Dragonfly
Reproductive Biology of Dragonflies and Damselflies

Dragonfly

Copulation - The "Wheel Position"

Oviposition in Tandem

Orthoptera: Stenopelmatidae - Jerusalem Cricket "Potato Bug" or "Ninas de la Tierra"

- Common ground dwelling insects in northern CA
- Large and capable of delivering a nasty bite
- Omnivorous and opportunistic predator; will feed on any animal it can subdue
- Roll over when disturbed and wave their spiny legs
- Commonly found under objects and in subterranean burrows

46