Rhodes Grass & Industrial Hemp as Potential Alternative Crops of the Low Desert

Oli Bachie

UCCE Agronomy Advisor for Imperial, Riverside and San Diego Counties

Progressive Grower's meeting. Blythe, CA., October 18, 2018

University of **California** Agriculture and Natural Resources

The Rhodes Grass: alternative forage crop?

- ✓ Backgrounds
- ✓ Research @ DREC
- ✓ Yield & nutrition
- ✓ Agronomic features
- ✓ Summary

University of **California** Agriculture and Natural Resources

Background

> Rhodes Grass (Chloris gayana Kunth, C. *abyssinica* Hochst (synonym)

✓ A perennial grass native to Africa, but, widespread in tropical & subtropical countries.

 Very closely related to Bermuda grass (Cynodon dactylon) &

 \checkmark can grow in many types of habitat

University of California Agriculture and Natural Resources

THY FOOD SYSTEMS | HEALTHY ENVIRONMENTS

The DREC Research Project;

Tested 2 varieties;

 \checkmark the 1st of its kind, here in CA

 Gulfcut (GF) & Recliner (RL) for adaptability, forage yield & nutrient compositions

Trial plots laid out as RCBD with 4 replication

University of **California** Agriculture and Natural Resources

Planting

- > 18 lbs of seeds/ ac
- Seeds broadcasted
- > sprinkler irrigation, then flood

Newly germinating Rhodes grass field

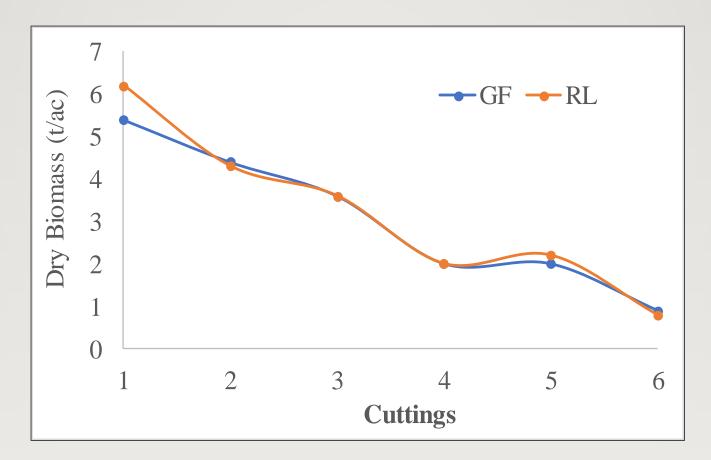
Fertilizers;

- ✓ 120 lb/ac N (pre-plant) & 50 kg/ac N at subsequent cuttings
- ✓ Pre-plant PK at 40-50 kg/ac

Quick germination (4-7 days) & full groundcover within 3 months

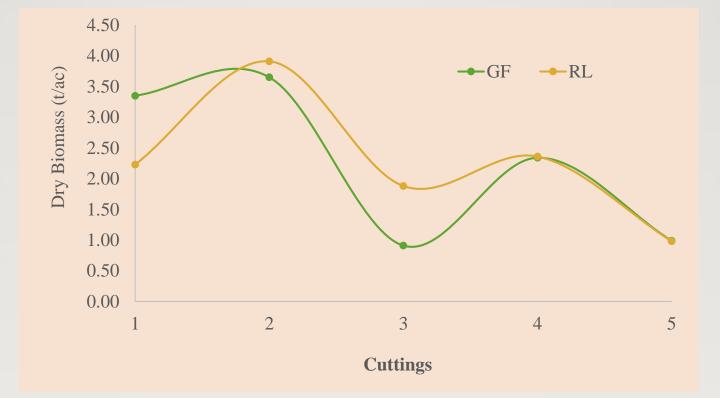
University of **California** Agriculture and Natural Resources

Biomass Yield


Harvest @ 5% of crop in the boot stage

University of **California** Agriculture and Natural Resources

First year biomass (t/ac) – 6 cuttings


Variety	5-May	21-Jun	28-Jul	29-Aug	10-Oct	12-Dec	Total
GF	5.4a	4.5a	3.6a	2.0a	2.0a	0.9a	18.4
RL	6.2a	4.26a	3.61a	2.0a	2.0a	0.8b	19.1
Pr>F	0.34	0.73	0.94	0.95	0.46	0.05	

University of **California** Agriculture and Natural Resources

Variety	24-May	12-Jul	31-Aug	1-Nov	12-Dec	Total
GF	3.4a	3.7a	0.9b	2.3a	1.0a	11.2
RL	2.2a	3.9a	1.9a	2.4a	1.0a	11.4
Pr>F	0.43	0.66	0.01	0.94	0.96	

Second year biomass (t/ac) – 5 cuttings

Graphical representation (dry biomass production)

University of **California** Agriculture and Natural Resources

Forage Crop hay yield comparison

Сгор	Acreage	2016 yield
	(2016)	(t/ac)
Alfalfa hay	154,861	7.19
Bermuda grass hay	50,704	7.89
Klein grass hay	14,590	10.0
Sudan grass hay	43,267	5.66
Rhodes grass	-	11-19

Source: 2016 IV Ag Crops & LS Report

University of **California** Agriculture and Natural Resources

Nutritional values from three samplings

Variety	CP%	AFD	dNDF	Ash	dNDF48	dNDF30	TDN	
RL	14.1 ^a	37 .5 ^a	65.4 ^a	9.9 ^a	38.1 ^a	23.5 ^a	59.8 ^a	
GF	14.2 ^a	37.8 ^a	65.0 ^a	9.7 ^a	37.5 ^a	22.4 ^a	59.5 ^a	
Pr>F	0.94	0.62	0.74	0.63	0.57	0.24	0.64	
		Second cutting						
RL	12.2 ^a	39.73 ^a	67.2 ^a	10.1 ^a	40.8 ^a	28.7 ^a	63.2 ^a	
GF	12.1 ^a	41.2 ^a	68.8 ^a	10.0 ^a	41.6 ^a	28.9 ^a	61.8 ^a	
Pr>F	0.94	0.41	0.4	0.74	0.25	0.71	0.26	
		Third cutting						
RL	12.4 ^a	38.9 ^a	69.4 ^a	10.1 ^a	40.0 ^a	28.9 ^a	59.2 ^a	
GF	13.4 ^a	38.4 ^a	67.5 ^a	10.1 ^a	40.2 ^a	29.5 ^ª	62.1 ^a	
Pr>F	0.24	0.69	0.32	0.93	0.68	0.62	0.16	

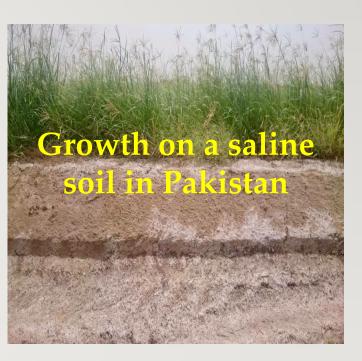
Means in each column followed by the same letter under each cutting is not significantly different from each other.

University of **California** Agriculture and Natural Resources

Forage nutrient component comparisons

Сгор	СР	TDN	ADF	NDF
Alfalfa	17-29	50-56	26-35	40-50
Bermuda grass	8-12	43	32-43	70-78
Sorghum / Sudan grass	8-15	-	29-40	55-65
Corn Silage	6-9	70	28-43	51-68
Wheat straw	4	-	54	85
Rhodes grass	12-14	59-63	37-41	65-69

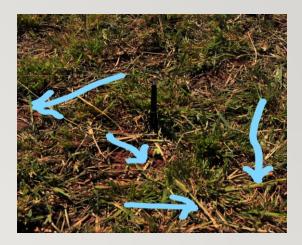
Source: Putnam (ag practices for forage quality)


- > One of the largest challenges for grower's is the increased interests on forage quality
- Forage quality affects both market and crop management
- Forage quality is a complex trait in plants & can be affected by genetic, environmental and agronomic factors, but most often defined in terms of dairy production (energy calculated from the fiber)
- Most energy estimated (TDN, NEL) are calculated from a fiber measurement (ADF, NDF). Hence, TDN and NEL are equivalent to ADF / NDF measurements

University of California

Agriculture and Natural Resources

Agronomic Features & Breeding


- > Sub-Tropical C_4 Grass
- Widely adaptable from
 soils of pH 4.5 to 8.5, salt
 tolerant up to 12 dS/m

University of **California** Agriculture and Natural Resources

Morphology / the stolons

Spreads through stolons
 (Stoloniferous) & highly
 productive

The culms are tufted or
 creeping, sometimes rooting
 from the nodes

University of **California** Agriculture and Natural Resources

Breeding & Optimization

- Selected Seeds, Australia; states "breeding program started 30 yrs ago"
- Previous RG were wild selections & inconsistent in feed bunks (Animals "sorting" leading to wastage)
- Breeding undertaken to optimize it as fine stemmed leafy Rhodes Grass

University of **California** Agriculture and Natural Resources

Two Prominent varieties

1) Reclaimer;

Diploid Rhodes grass cultivar

- Breed for aggressive stoloniferous
 growth habits, salt tolerance, fine leaf,
 fine stem and high dry matter yields
- > Exhibits higher cool season tolerance

University of **California** Agriculture and Natural Resources

The varieties/ cont.

2) Gulfcut;

✓ improved diploid cultivar

- bred for its extremely fine stem, erect growth habit & high leaf production.
- \checkmark well suited for hay production

University of **California** Agriculture and Natural Resources

Planting

≻ Good when temperatures are 60F & above

> Small seed so planting no greater than 3/8"

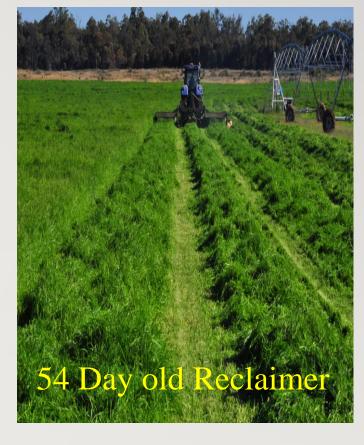
> Planting rate about 20lbs per acre

University of **California** Agriculture and Natural Resources

Soil & Fertilizer Requirements

- Nutrient decisions varies upon locations,
- but Split applications of 50-100 kg/ha N,

are normall	Species	N-fert.	Regrowth days	DM yield kg/ha %	СР %
Rhodes grass	Rhodes	0	17	1340	13.3
responds well	Rhodes	+	17	2200	18.1
to N fertilizer	Rhodes	0	34	1880	12.3
	Rhodes	+	34	3790	15.1


Keftasa, 2006

University of **California** Agriculture and Natural Resources

Agronomic features .../ cont.

Harvesting

- > 1st cut is @~ 50 days from planting
- Subsequent cuttings could be every
 30 days (summer)
- Could have ~ 6 cuts per year
- Dormant during winter Dec-Feb
- Stand persistence is 3+ Years

University of **California** Agriculture and Natural Resources

Harvesting/ cont.

University of **California** Agriculture and Natural Resources

Other desirable Characteristics

- Tolerates mechanical damages
- Crop after the damage (bottom)

University of **California** Agriculture and Natural Resources

Desirable Characteristics/cont.

Weed Control

> Not a problem at all

May need BL weed control at establishment

Vigorous competitor once established

University of **California** Agriculture and Natural Resources

Pest & disease management

No specific pests/disease observed

Needs to monitor for
 Armyworm (*Mythimna*.
 Unipuncta) & Grasshoppers

University of **California** Agriculture and Natural Resources

Suitability for Pasture (not tested here)

- Suitable for rainfed & irrigated systems
- Drought resistant & high WUE
- Highly desirable for direct pasturing, palatable
- Suitable for all animals (Dairy, Beef, Horses, Goats & Sheep)

University of **California** Agriculture and Natural Resources

Summary (strengths)

- Easy establishment & outcompete weeds
- > High yielding
- Widely adaptation & high WUE
- Excellent nutritive value
- > High salt & stress tolerant
- Rare pests or diseases
- > Tolerate / suppress nematodes
- Tolerant of heavy grazing

University of **California** Agriculture and Natural Resources

Summary (limitations)

- Not adapted to acid, infertile soils.
- Plants require optimum fertility for full production
- > Low shade tolerance.

University of **California** Agriculture and Natural Resources

Industrial Hemp, *Cannabis sativa L; Could it be a* Low Desert Crop?

- ✓ What is industrial hemp?
- History of the Industrial hemp
- Regulations & restrictions
- potential to be alternative crop
- Planned UCCE research project

University of **California** Agriculture and Natural Resources

Backgrounds

- > Industrial hemp (IH) dioecious annual plant
- Versatile crop known to produce;
 - ✓ food, fuel, feed, fiber for textiles, oils for industrial & cosmetic purposes, pharmaceuticals, & over 25,000 products

University of **California** Agriculture and Natural Resources

Suggested Productivity

Produces 3 times the amount of fiber as cotton from the same size of land (Cherrett, et al., 2005)

✓ Consumes 66% to 76% less water than cotton (*Yvonne S- azcentral.com*);

Heat tolerant

University of **California** Agriculture and Natural Resources

Environmental adaptations

Suggested to prefer a mild climate, but is well adapted / grown in the states of Nevada & Arizona (www.coloradohempproject.com), with very similar weather to the low deserts of Southern CA

University of **California** Agriculture and Natural Resources

Environmental adaptations/ cont.

- Suggested to have evolved originally as desert plant & referred to as *xeric plant*,
 - Plants that develop survival mechanisms for low rainfall &
 - Adaptation mechanisms to arid climate produces *trichomes* – structures that reduce loss of water from leaves

University of **California** Agriculture and Natural Resources

Develops deep tap roots, hence can find water sequestered in the ground (Amaducci, et al. 2008)

Preferences are alkaline soils of pH 7 to 7.5.

Grows faster, produces high yields & can be grown without heavy use of pesticides.

University of **California** Agriculture and Natural Resources

Growth Characteristics/ cont.

So, it is misunderstood for its "preferred" growing environment reference to a "crop of mild climate"

Rather, its growth characteristics & resource conservation mechanisms point out that it has great adaptability to the low desert

University of **California** Agriculture and Natural Resources

History of IH in the IV Imperial County Hemp, 1920 "Hemp at Timpken Ranch

Per IVP sou dates back to

IH farming i federal law j sudden peop

https://www.thecannachronicles.com/imperialcounty-hemp-1920/

University of **California** Agriculture and Natural Resources

Current growth – IV Conservation Research Center

Potential pathogens (see chlorosis)

https://www.thedesertreview.com

University of **California** Agriculture and Natural Resources

Potential Low Desert Productivity

- The Low Desert being unique in its weather, *IH* can grow throughout the year for multiple harvests, at least 2 harvests / yr.
- Could be a substantial revenue & economic potential for growers of Imperial County, the state & the country, in general

University of **California** Agriculture and Natural Resources

Restrictions / Regulations

Not been grown legally in CA for many years, due to regulatory restrictions.

In recent years, restriction became loose & many industry groups have shown research interest

University of **California** Agriculture and Natural Resources

The Ease in regulations

- The 2015 federal law removed hemp from the list of controlled substances as long as its tetrahydrocannabinol (THC) content do not exceed 0.3%.
- Senate bill #566 (the CA IH Farming Act), defines IH as a fiber or oilseed crop

University of **California** Agriculture and Natural Resources

CALIFORNIA DEPARTMENT OF FOOD & AGRICULTURE

CALY CalCannabis Cultivation Licensing

1220 N Street, Sacramento, CA 95814 • 1-833-CALGROW (1-833-225-4769) • calcannabis@cdfa.ca.gov

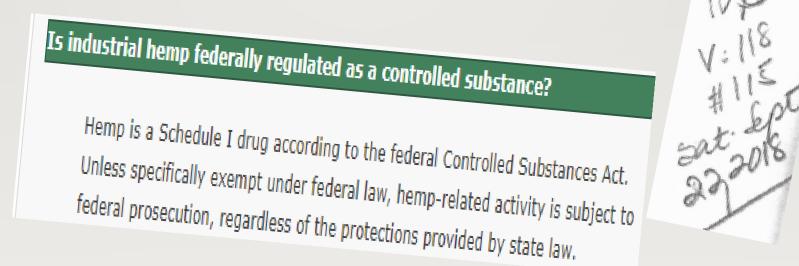
Apply Now: Applications for Temporary and Annual Cannabis Cultivation Licenses

The California Department of Food and Agriculture's CalCannabis program is now accepting **applications for** temporary and annual cannabis cultivation licenses.

University of **California** Agriculture and Natural Resources

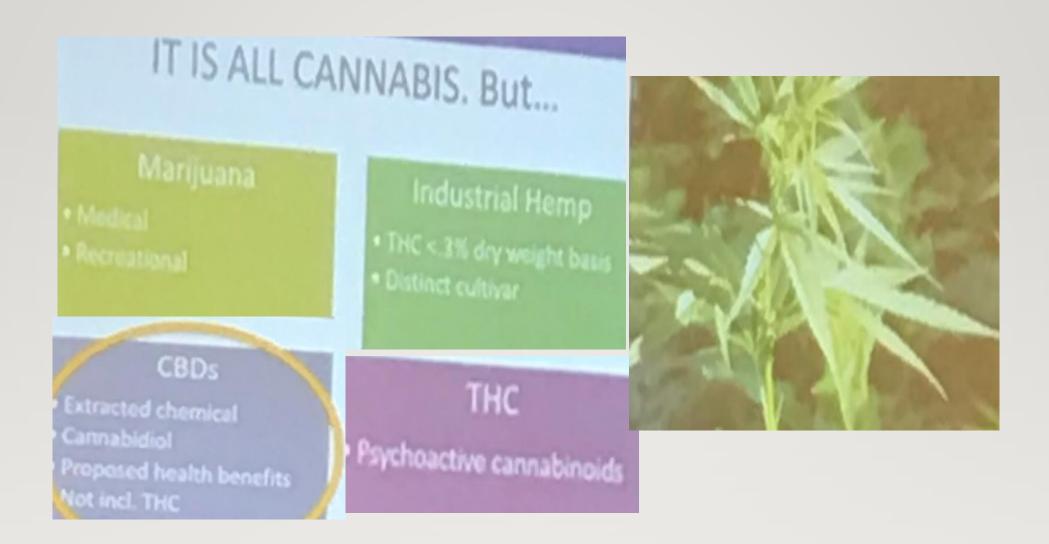
Agricultural Commissioner Sealer of Weights & Measures COUNTY OF IMPERIAL

> Cannabis Cultivation Licensing & Industrial Hemp Grower Registration


Can I grow industrial hemp in California?

All commercial growers of industrial hemp must register with the county agricultural commissioner prior to cultivation.

University of **California** Agriculture and Natural Resources


Controversies b/n federal & state laws

 Although CA allowed permits for cultivating *IH* as long as THC < 0.3%, both cannabis and IH are schedule 1 substances, meaning they are prohibited from being cultivated

University of **California** Agriculture and Natural Resources

Some terminologies

University of **California** Agriculture and Natural Resources

Some Shortcomings

Currently available cultivars are developed for cooler environments

- May be sensitive to high & low temperatures (*Amaducci, et al. 2008*)
- Hence, the need for testing available cultivars if they withstand heat, high temperatures & other environmental conditions of the low desert.

University of **California** Agriculture and Natural Resources

Planned Research Projects

- Recognizing the desirable benefits of this crop, the potential adaptability & future economic benefits,
 - UCCE Imperial County intends to conduct research at the UC Desert Research & Extension Center

University of **California** Agriculture and Natural Resources

Our Objectives

Test adaptability to withstand the dry & hot weather conditions of the low desert

- ✓ determine inputs (fertilizer, water)
- ✓ evaluate potential seed & fiber yield
- repeated trials will identify the best planting & growing seasons

Produce crop production guidelines

University of **California** Agriculture and Natural Resources

- Periodically test crop THC levels per bill 566 (no more than 0.3% concentration)
 - ✓ Evaluate if heat has effect on [THC]
 - If levels exceed, trials should be destroyed

University of **California** Agriculture and Natural Resources

Outcome of our Planned Research Project

- Help identify cultivars that may withstand heat, high temperatures & other environmental conditions of the low desert.
- Evaluate *IH* susceptibility to low desert pests
- Help develop systems & protocols for development & implementation of *IH* production guidelines for the low desert

** More information after the experimentation

University of **California** Agriculture and Natural Resources

Acknowledgments

Rhodes grass research at DREC was conducted with funding support provided by "Selected Seeds". We thank the support provided by UCCE Imperial County & DREC staff for management of the research project

Quality . Innovation . Production www.selectedseeds.com.au

University of **California** Agriculture and Natural Resources