Vineyard Irrigation in San Joaquin Valley of California

George Zhuang

Viticulture Farm Advisor UC Cooperative Extension - Fresno County

Vineyard Irrigation and Sustainability – Dr. Larry Williams, UC Davis

- Maintain productivity over time
- Maximize fruit quality
- Increase vineyard *water use efficiency* or decrease *water footprint* (*in general, if the vineyard is irrigated any reduction in applied water will increase WUE, decrease water footprint*).
- Minimize/maximize soil water depletion (function of soil type and rooting depth, cover crop management)
- Some of the above factors will be a function of location in California and price of grapes

How to Make Irrigation Decisions? - Dr. Larry Williams, UC Davis

- When should one initiate irrigations at the beginning of the season?
- How much water should one apply?
- How does the design of your irrigation system affect the ability to irrigate your vineyards?
- Are there deficit irrigation practices to minimize production loss and maximize fruit quality?

When to Start?

- Visual estimation
- Soil moisture
- Plant water stress

Visual Estimation

- Budbreak
- Shoot tip
- Leaf
- Tendril
- Inflorescence/berry

Visual Estimation

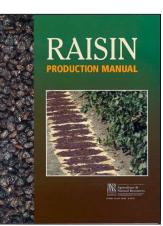
Soil Moisture

- Tensiometer (centibar)— measures the attraction of soil to its water. Soil-water suction or tension is a measure of the *soil's matric potential*.
- Gravimetric (%) taking a known volume of soil and weighing it first and then taking its dry weight.
- Neutron probe, capacitance sensors, TDR are used to measure soil volumetric water content (θ_v).

Soil Moisture

Plant Water Stress

- Pressure chamber
- Sap flow sensor


Irrigation starts when midday leaf water potential reaches -10 bars

How Much to Irrigate?

- Evapotranspiration (ET)
 - Historical ET
 - Crop ET (ETc): ETc = ETo × Kc, Dr. Larry Williams, UC Davis
 - Actual Crop ET (ETa): surface renewal method, e.g., Tule Technology

Crop ET

- $ETc = ETo \times Kc$
- ETo from CIMIS Stations
- Kc
 - Measuring canopy cover
 - Estimate Kc by using GDD

Kc=(0.017 × Shaded percentage of field) – 0.008

Crop Coefficient (Kc)

• Estimate Kc by using GDD (Dr. Larry Williams, UC Davis)

Trellis/Canopy type	Row Spacing (ft)	Kc Equation
VSP	7	Kc=0.74/(1+e^(-(x -525)/301))
	8	Kc=0.65/(1+e^(-(x-525)/301))
CA Sprawl	10	Kc=0.84/(1+e^(-(x-325)/105))
	11	Kc=0.76/(1+e^(-(<mark>x</mark> -325)/105))
Quad-cordons	11	Kc=0.93/(1+e^(-(x-300)/175))
	12	Kc=0.85/(1+e^(-(<mark>x</mark> -300)/175))

How to Calculate Kc?

UNIVERSITY OF CALIFORNIA AC UC VIC Integrated P	ΡM								
What is IPM? Identify & Manage	Pests Resea	arch Put	blications	Training & Events	Links	About Us	Contact Us	Subscribe 🔊	
номе									💾 PRINT
ON THIS SITE	Weath	er, m	odels	, & degree	-day	'S			2
What is IPM?				and models that car	n help yo	ou make pes	t managemer	nt decisions ba	ised on
Home & landscape pests	conditions California v			and plant models /	Addition	al tools De	gree-day calo	culator	
Agricultural pests									
Natural environment pests	Californ			ata rom stations througl	hout Cal	ifornia plus	long-term da	ta for climate	stations
Exotic & invasive pests				wide hourly and dai					stations.
Weed gallery			t the datab	oase Western Regi	onal Clir	nate Center	CIMIS		
Natural enemies gallery	Select fro		unty) Cou	nty 🖂 Ma	ар		Active station	c .	
Weather, models & degree-days	O statio	ns in (Ne	tworks) N	etworks		\sim	Map only		
Pesticide information	○ statio	n: Enter a	all or part of	a name.	List		Submi	it	

How to Calculate Kc?

GDD is based on 10 °C

MAKE A GIFT	Fire blight risk for apple and pear Pink bollworm (TABLE) • More interactive tools and calculators Fuller rose beetle (TABLE) San Jose scale (TABLE) • More interactive tools and calculators Grape powdery mildew index Lygus bug (TABLE) Tomato fruitworm (TABLE) Navel orangeworm (TABLE) Tomato powdery mildew spray forecast
	Degree-day calculator (Text-only version) Specify the thresholds and method of calculation for any model. Use weather data from the UC IPM weat database, a file you supply, or data you enter online. Using this calculator About degree-days 🛱 Using degree-days
	Using this calculator About degree days LN Using degree-days

For noncommercial purposes only, any Web site may link directly to this page. FOR ALL OTHER USES or more information, read Legal Notices. Unfortunately, we cannot provide individual solutions to specific pest problems. See our Home page, or in the U.S., contact your local Cooperative Extension office for assistance.

Acknowledgements | Staff-only pages | Subscribe (RSS) | Contact UC IPM

Agriculture and Natural Resources. University of California

How to Calculate Kc?

IIVERSITY OF CALIFORNIA AGRICULTURE & NATURAL RESOURCES

UC & IPM Statewide Integrated Pest Management Program

How to Manage Pests Degree-Days: Custom Calculation

HOME

SEARCH

| Degree-day menu | Change county or date | Change station | Change backups | About degree-days |

Lower threshold: 10°C Calculation: single sine/horizontal

ON THIS SITE

What is IPM?

Home & landscape pests

Agricultural pests

Natural environment pests

Exotic & invasive pests

Weed gallery

Natural enemies gallery

Weather, models & degree-days

Pesticide information

Research

Publications

Weather station: PARLIER.A (CIMIS #39, Parlier)

Time period: March 15, 2018 to July 11, 2018, retrieved on July 12, 2018 (119 days). **Note:** Only 99% of requested data were available from station PARLIER.A. See retrieval table.

	Air tempera	tures (°C)	De		
Date	Min 🗶	Max *	Daily	Accumulated	Notes
Mar 15 2018	5.6	16.7	2.38	2.38	
Mar 16 2018	5.0	14.4	1.35	3.73	
Mar 17 2018	2.2	15.0	1.39	5.11	
Mar 18 2018	1.7	15.0	1.36	6.47	
Mar 19 2018	2.8	20.0	3.47	9.95	
Mar 20 2018	8.9	17.8	3.52	13.46	
Mar 21 2018	11.1	17.2	4.15	17.61	
Mar 22 2018	9.4	18.9	4.21	21.83	
Mar 23 2018	6.1	17.2	2.67	24.50	
Mar 24 2018	5.6	17.8	2.87	27.36	

Too Much Work?

University of California Cooperative Extension Fresno County Viticulture

UCCE Home Contact Us

Home

San Joaquin Valley Grape Symposium Slides

Vit Tips Newsletter

Vine Lines Newsletter

Grape Production

Production Cost

Pests and Diseases

Irrigation Scheduling

Links

550 E. Shaw Avenue Ste. 210 Fresno, CA 93710 Phone: <u>(559) 241-7515</u> Fax: (559) 241-7539

Grape Weekly ET Reports

2018 Weekly ET Reports

The California Department of Water Resources and the University of California Cooperative Extension have teamed up to provide Weekly ET Reports to agricultural water users. Reports include water use information for a variety of crops. Reports will be posted every Friday or Saturday for next week's guidelines.

PRINT

Weekly ET Reports for grapes use raisin grape (7' \times 11' vine/row spacing with 566 vines/acre) and wine grape (7' \times 10' vine/row spacing with 622 vines/acre on "California Sprawl" trellis) as examples. Acre-inch and gallons per vine will be reported this year. Growers might apply differently according to the vine/row spacing and trellis type in your vineyard.

04052018 FresnoEast Weekly Evapotranspiration Report

04122018 Fresno Weekly Evapotranspiration Report

04192018 Fresno Weekly Evapotranspiration Report

04262018 Fresno Weekly Evapotranspiration Report

05032018 Fresno Weekly Evapotranspiration Report

05102018 FresnoEast Weekly Evapotranspiration Report

HEALTHY FOOD SYSTEMS + HEALTHY ENVIRONMENTS + HEALTHY COMMUNITIES + HEALTHY CALIFORNIANS

University of California

Agriculture and Natural Resources

UCCE/DWR Weekly Crop Water Use Report

Making a Difference for California

		nated Crop	OISTURE LOS Evapotranspirat 8 through 07/05/1	ion or ET _c)						
Crops (Leafout Date)		8 Madera II	***		#39 Parlier		#86 Lindcove			
	o/29- 7/5 Water Use	Accum'd Seasonal Water Use	7/6-7/12 Estimated ETc	6/29- 7/5 Water Use	Accum'd Seasonal Water Use	7/6- 7/12 Estimated ETc	6/29- 7/5 Water Use	Accum'd Seasonal Water Use	7/6-7/12 Estimated ETc	
Almonds (3/16) *	1.97	20.45	1.90	2.07	20.64	1.89	2.03	19.88	1.89	
Pistachio (4/21) * **	2.08	10.68	2.04	2.18	10.85	2.03	2.14	10.62	2.03	
Citrus (2/1)	1.26	18.71	1.20	1.30	18.78	1.19	1.27	18.12	1.19	
Raisin Grapes (3/16) (11 ft. row spacing)	1.62	13.86	1.55	1.69	13.94	1.54	1.66	13.46	1.54	
Winegrapes (3/16) (10 ft. spacing on California Sprawl Trellis)	1.80	14.50	1.76	1.88	14.60	1.75	1.85	14.17	1.75	
Walnuts (4/4)	1.82	15.75	1.83	1.92	15.91	1.82	1.88	15.37	1.82	
Stone Fruit (3/16)	1.72	14.74	1.69	1.82	14.86	1.68	1.78	14.40	1.68	
Past 7 days precipitation (inches)		0.00	S.		0.00			0.00		
Accumulated precipitation (inches) (1/1/2018)		6.33			4.96			3.32		

Dates in parentheses above, indicate leaf out or starting date for ET accumulation for the specific crop

* Estimates are for orchard floor conditions where vegetation is managed by some combination of strip applications of herbicides, frequent mowing or tillage, and by mid and late season shading and water stress. Weekly estimates of soil moisture loss can be as much as 25 percent higher in orchards where cover crops are planted and managed more intensively for maximum growth.

** Very vigorous, non-salt affected peak season pistachio Kc can be as high as 1.19 - resulting in about 8% greater water use than shown in these tables.

*** CIMIS station #188 Madera II has been taken out of service due to a conversion of the pasture to permanent crops. For the remainder of 2018 irrigation season Historical Average ETo will be used for the weekly report.

1	PAST WEEK	LY APPLI	ED WATER	R IN INCHE	ES, ADJUST	FED FOR E	FFICIENC	Y-				
Crops	#188 Madera II				#39 Parlier				#86 Lindcove			
System Efficiency >>	65%	75%	85%	95%	65%	75%	85%	95%	65%	75%	85%	95%
Almonds (3/16)	3.0	2.6	2.3	2.1	3.2	2.8	2.4	2.2	3.1	2.7	2.4	2.1
Pistachio (4/21)	3.2	2.8	2.4	2.2	3.4	2.9	2.6	2.3	3.3	2.9	2.5	2.3
Citrus (2/1)	1.9	1.7	1.5	1.3	2.0	1.7	1.5	1.4	2.0	1.7	1.5	1.3
Raisin Grapes (3/16) (11 ft. row spacing)	2.5	2.2	1.9	1.7	2.6	2.3	2.0	1.8	2.6	2.2	2.0	1.7
Winegrapes (3/16) (10 ft. spacing on California Sprawl Trellis)	2.8	2.4	2.1	1.9	2.9	2.5	2.2	2.0	2.8	2.5	2.2	1.9
Walnuts (4/4)	2.8	2.4	2.1	1.9	3.0	2.6	2.3	2.0	2.9	2.5	2.2	2.0
Stone Fruit (3/16)	2.6	2.3	2.0	1.8	2.8	2.4	2.1	1.9	2.7	2.4	2.1	1.9

1 The amount of water required by a specific irrigation system to satisfy evapotranspiration. Typical ranges in irrigation system efficiency are: Drip, 80%-95%; Micro-sprinkler, 80%-92%, Sprinkler, 70%-85%; and Border-furrow, 50%-75%.

	PAST W	EEKLY A	PPLIED W	ATER IN G	ALLON PH	ER TREE O	OR VINE					
Crops		#188 Madera II					0			#86 Lindco	ve	
Almonds 115 Trees/A	708	614	543	496	756	661	567	519	732	638	567	496
Pistachio 106 Trees/A	797	698	598	548	847	722	648	573	822	722	623	573
Citrus 110 Trees/A	469	420	370	321	494	420	370	346	494	420	370	321
Raisin Grapes 566 Vines/A	120	106	91	82	125	110	96	86	125	106	96	82
Winegrapes 622 Vines/A	122	105	92	83	127	109	96	87	122	109	96	83
Walnuts 76 Trees/A	1000	857	750	679	1072	929	822	715	1036	893	786	715
Stonefruit 172 Trees/A	410	363	316	284	442	379	332	300	426	379	332	300
For further information concerning all counties receiving	g this report, contact the Fresno C	o. Farm Ad	visor's office	at (559) 24	1-7526.			\checkmark	A.S.			

Actual Grape ET

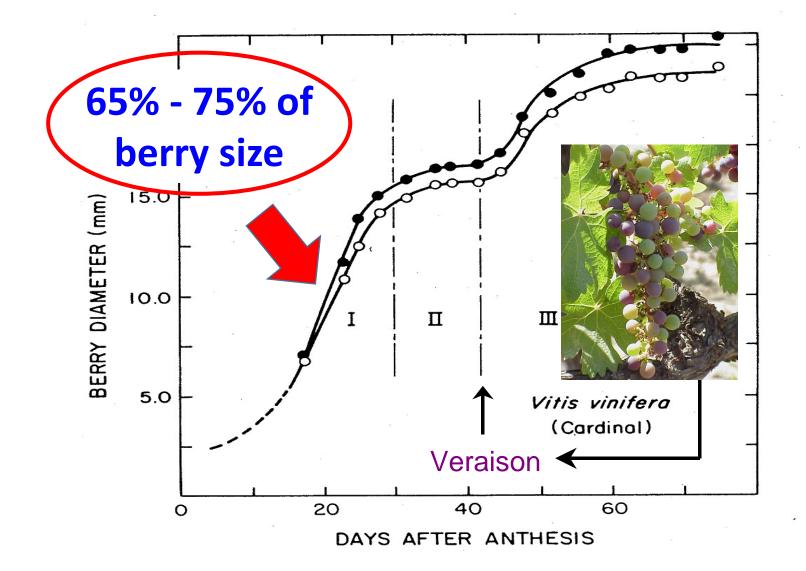
• Surface Renewal, e.g., Tule Technology: provide daily actual ET, e.g., gallons/vine/day

How to Schedule Irrigation?

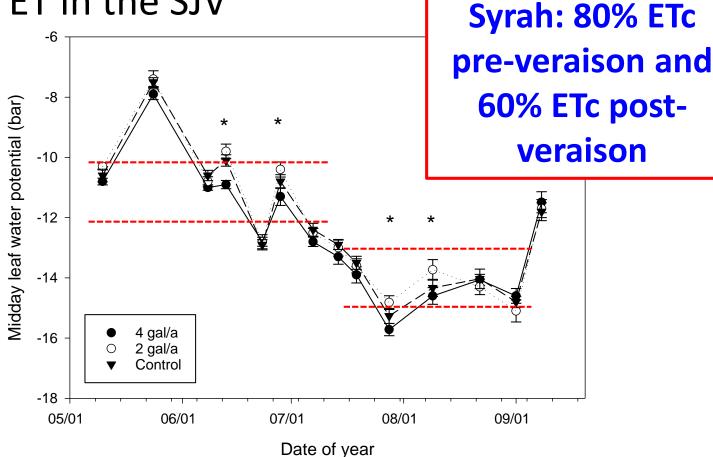
- Obtain gallons/vine/week from crop ET reports, Tule, historical ET...
- Number of emitters per vine, e.g., 2 emitters/vine
- Flow rate per emitter, e.g., 0.5 gallon/hour
- Hours/week = (gallons/vine/week)/(number of emitters/vine × flow rate)

Double Check Flow Rate!

How to Deficit Irrigation?


- It depends on your production goal:
 - Yield
 - Quality
- Overall, berry size/yield is maximized with applied water at 80% of ETc (Dr. Larry Williams, UC Davis)

How to Deficit Irrigation?


- Pre-veraison water deficit
 - Significant impact on berry size/yield, and generally beneficial for quality: *smaller berry with higher skin/pulp ratio*
- Post-version water deficit
 - Minimal impact on berry size/yield, and still beneficial for quality: *plant growth regulator, e.g., ABA*?

Water Deficit on Berry Size

Irrigation Scheduling

• Midday leaf water potential well responds with ET in the SJV

Conclusion

- Deficit irrigation (at applied water amounts ~ 80% of estimated ET_c) had only minimal effects on berry size.
- Overall, yield is maximized with applied water at 80% of estimated ETc.
- Water deficit can be applied at different phenological stages to achieve the production goal.

Acknowledgement

- Gaia Nafziger, UCCE Fresno County
- Dr. Larry Williams, UC Davis
- SJV wine growers and wineries

Questions?

