Soil Sampling, Risk Mapping & Exposure Prevention

Second Session of a Three Part Series on Soil Quality/Health

Rob Bennaton
UC Cooperative Extension
Bay Area Urban Agriculture Advisor

510-670-5621 rbennaton@ucanr.edu

Goal:

Understand Soil Quality to Assess Site-Risk & Manage Soils to **Grow Food & Family Safely**

Objective:

Provide Soil Testing & Best Practice Guidance to 个 **Informed Decision Making** that \downarrow Risk of Soil **Contaminant Exposure**

Why should you care about your soil?

Soil Quality

→ How Your Crops Grow!!!

Some Soils Are Easy To Improve:

Plants Grow Best With Proper

Nutrients/Structure/Composition/pH

Dont Guess! Test!!

Some Soils are Harder to Improve: If have Contaminants...

Soil Quality Affects Human/Plant Health

→ Risk Management: (even in testing)

Home Tests versus Lab Test Results

DIY Home Tests → Basic Info

vs. Lab Tests → Reliability & Precision

Where are Soil Contaminants a Concern?

- Agricultural Lands Historical Contaminants can Inhibit Plant Growth/Affect Human Health
- Residential Properties Contaminants could be
 Allowable for Human or Plant Health
- Urban Ag/Community Garden Sites –
 Based on Site History/Possibly Several Risks

Common Soil Contaminant Sources

Source:	Contaminant
Paint (before 1978):	lead
High traffic areas:	lead, zinc, PAHs
Treated lumber:	arsenic, chromium, copper
Burning wastes:	PAHs, dioxins
Manures:	copper, zinc
Coal ash:	molybdenum, sulfur
Sewage sludge:	cadmium, copper, zinc, lead, PBTs
Petroleum spills:	PAHs, benzene, toluene, xylene
Commercial / industrial	PAHs, petroleum products, solvents, lead,
site use:	other heavy metals
Pesticides:	lead, arsenic, mercury (historical use),
	chlordane and other chlorinated pesticides

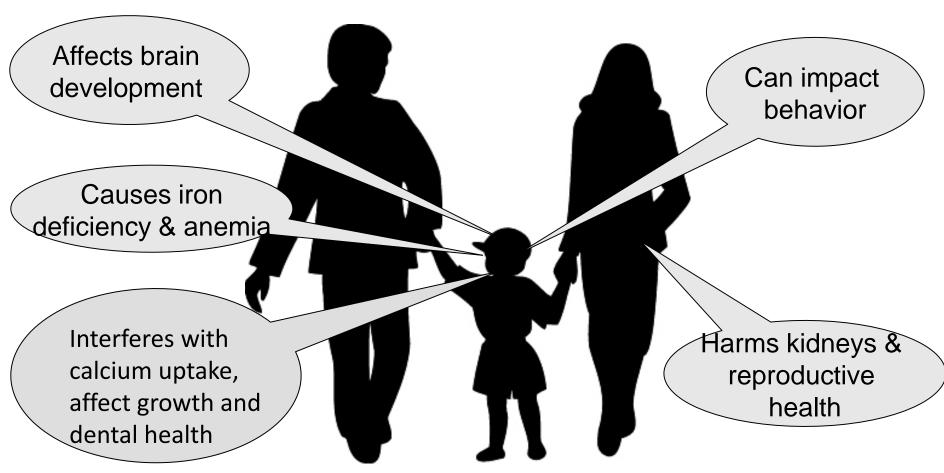
Why are soil contaminants a concern in urban areas?

Contaminants Can:

- -Inhibit Plant Growth
- -Affect Human Health!
- -Persist in Soils Long Term
- -Persist without Us Knowing

Sources of **Heavy Metal/Lead Exposure**

- **Lead paint hazards**
 - → lead **dust** in homes; from exterior prep work & friction of windows
- Bare soil in yards with lead contamination from house paint or previous use of leaded gasoline
- **Take-home** lead dust from construction work or other occupations



How do we get lead into our body while growing food?

- Hands contaminated with leaded soil
 Contaminated hands touch mouth, food, drink container, cigarette
- Hands contaminated with leaded paint
 Hands touch damaged lead paint and its dust. Then hands touch mouth, food, drink container, cigarette, etc.
- Eating lead-containing soil or paint dust on unwashed produce, or eating produce that has lead uptake

©Garden For The Environment and S.F. Department of Public Health, Sept. 2012

How Lead Toxicity Affects Health

Children at most risk- their brains & bodies are still developing (& fetus, because lead easily crosses placenta).

University of California

©Garden For The Environment and S.F. Agriculture and Natural Resources A Celebra Pepartment of Public Health, Sept. 2012

Human Exposure Pathways: →Soils/Dust Ingestion,

- - → Skin/Eye Contact, Inhalation
 - → Bare Feet from Garden to Home
- Who is impacted?
 - -Humans/Children/Seniors -Pets
 - ~ Based on Contaminant Concentrations

Plant/Crop-Contaminant Exposure Pathways

Through Plants Roots → Plant Root Uptake
(In Plants=Lab tests) (Plant-Internal/Now what?)

On Plants' Parts/Leaves → Topical

(ALL Plant/Leaf Surfaces (Plant-External/Wash)

=Lab Tests/Not Visible to Naked Eye)

If contamination found, how manage soils?

Use Best management practices based on case.

Best Practices: Recognize Potential Contamination → Know Risks

- Test Soils: Dont Guess! Research! Investigate! Do Soil Tests!!
- Buy Organic Materials Review Institute (OMRI)
- Test soils to confirm lead is < 80 ppm
- Wear Gloves & Practice Good Hygiene/Boots
- Don't Let Kids Garden/Play in > 80 ppm Soils

Best Practices:

Raise → Import Clean Soils/Make & Use Compost

Amend → -to Bind Soil Contaminants With
 with Phoshorous & Dilute Contaminants
 Compost/OM

Mulch → -to Prevent Airborne Soil Dust & Prevent Upsplash

SubSurface → -to Prevent Upsplash/Spreading Particles
Irrigate

Beds

Best Practices:

Adjust → Neutral pH → Optimal Growth/Nutrition pH

Promote -Soil Contaminants Concentrate @

Good → Slopes-Bottoms/Allow H20 Infiltration

Drainage

Post-Harvest→ -Soak in Vinegar/Wash Produce & Peel Root Crops

Manage → -Avoid Waste-Derived Fertilizers Inputs

Where to start?

Understand/Interpret:

- Site History
- Soil Test
- Remediation versus

Best Management Practices

Observe Plant Growth/Soil Orgs/Debris

Dig test, Soil Structure Tests.

Site History > What to Look For:

- Public Access Maps (Sanborn)
- Walk around, ask neighbors/property owners, identify other homes in neighborhood that show similar potential hazards
 - Parking lots, auto repair, junkyards, machine shops, dry cleaners, gas stations, concrete plants, illegal dumping sites!!

Every site is different, Soils vary too... Ask Yourself....:

Are there plants currently growing?

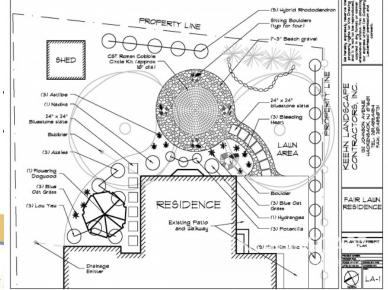
- Is the soil easy to dig into?
- Are you finding any micro organisms in the soil? (worms, insects, larvae)
- Do you come across any debris or trash?
- Consider a Bean Test: plant in testing site soil, and compare growth with potting soil.

Mapping Your Food Growing Site

- Areas that show differences in plant growth should be sampled separately
 - Peeling paint, evidence of contamination
- 5-6 samples per area (top 4-6 inches of soil)
 - Decomposing foliage should not be included
 - Keep accurate notations per site-area
 - Each distinct area should be sampled

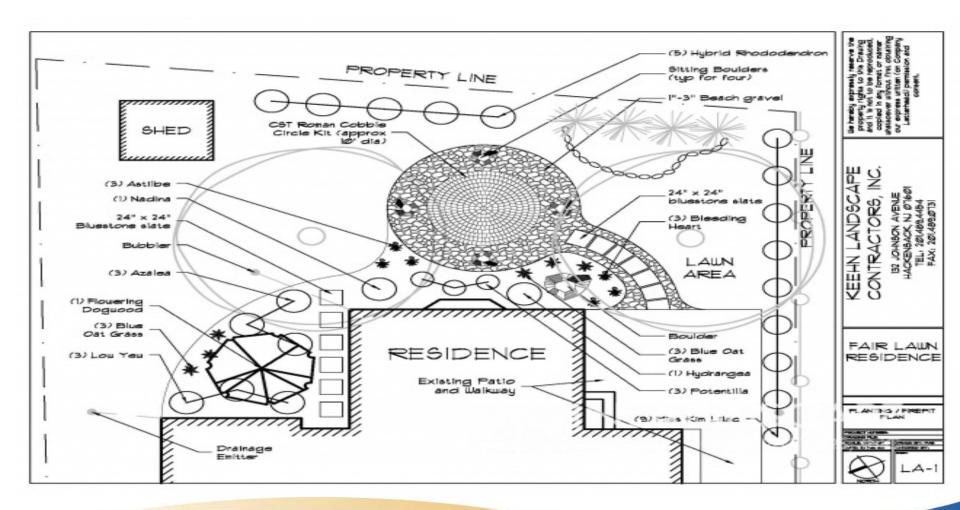
Mapping your Site for Soil Tests

Make Maps with Notes for


Different Sample-Site Locations

Ex: Front/Back/Side Yard Sample Maps

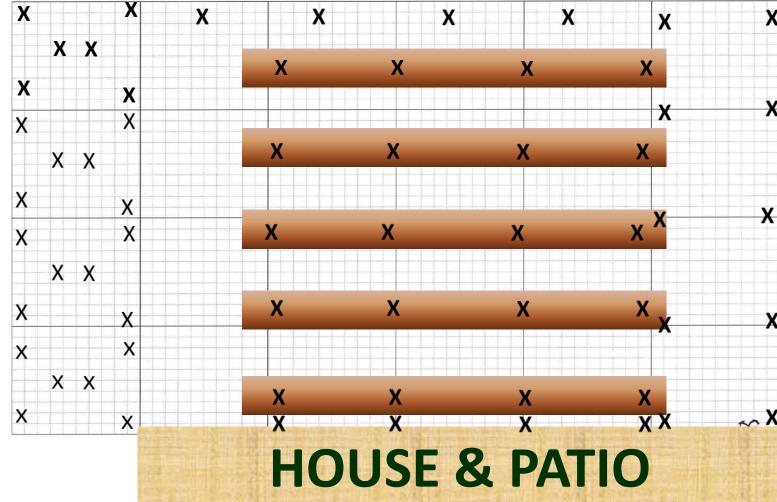
Map your Garden Based on Planting Areas


(Exs: veggies, native

perennials, fruit trees, etc...)

Map Your Growing Site

Urban Tilth's North Richmond Farm, Richmond, CA



DRAW TREE DESIGN

City Slicker Farms' West Oakland Farm Park, Oakland, CA:

Example of Soils Sampling Map

Soil Testing

See UCCE Contra Costa/Alameda Master Gardeners

Growing Your Own Food Web Page(s)

for Analytical Laboratories for Soil Testing

EPA Suggests Urban Garden Soils should Be Tested for: -pH -% organic matter

-Nutrients -Heavy Metals/Petro-/Dioxins (based on site history including lead)

How Should Samples Be Collected?

- Sampling Strategy ~ Site Conditions
- Sampling Soil Surface? Top 2"
- Sampling Food Growing Site? Top 6-12"
- For Both, Make a Composite Sample.
- Mix/Remove Sub-Sampled for Testing.

Sample Preparation

- Map Sample Spots
- Collect/Mix Composite Sample
- Dry
- Sift
- Remove and Bag Test Sample
- Send/Deliver

Sampling Your Soil

- **Use clean equipment!**
- If toxins found, test subsamples by sample area **AGAIN!!!**
- Sample depth based on plant material
 - Veggies 1-12 inches
 - Turf 1-6 inches
 - Shrubs, roses 1-12 inches
 - Small Trees 6-18 inches
 - Deep rooted trees 6 to 24-36 inches

Soil Sampling

- Do not sample under wet conditions/bad for soil structure
- Depending on case, may discard top inch of subsamples
- Remove non-soil materials/Rocks
- Mix subsamples, Send sample in plastic zip-type bag (6-8 cups)
- Label completely! Date, time, weather, slope, vegetation, GPS

UC Cooperative Extension

Serving the People of Alameda & Contra Costa Counties

With Support from Alameda County and Contra Costa County Agriculture Departments

By Rob Bennaton,
Bay Area
Urban Agriculture Advisor
510-670-5621
rbennaton@ucanr.edu

jschweiger@ucanr.edu

408-282-3113

Jessica Schweiger

Urban Agriculture

Program Manager

UC Cooperative

Extension

Serving the People of the San Francisco Bay Area

Counties!!!

Caption: 8-22-2015
Workshop at the Gill Tract

University of California
Agriculture and Natural Resources

Serving the People of the San Francisco
Bay Area Counties!!!

By Rob Bennaton,
Bay Area Urban Agriculture Advisor
510-670-5621
rbennaton@ucanr.edu

