

PADDOCK DESIGN FENCING WATER SYSTEMS

2018 California Cattle Grazing School

FIRST THINGS FIRST

- Paddock design, fencing and stockwater systems (on their own) WILL NOT INCREASE PROFIT!
- If your bulls are infertile, fencing will not fix the problem!
- Fencing will not solve family relationship problems!
- Fencing and stockwater systems CAN help address:
 - Livestock distribution problems
 - Labor costs
 - Ability to rest pastures

CELL DESIGN

Re-designing your ranch with managed grazing principles in mind!

DESIGN FOR WHAT YOU WANT!

BUILD YOUR PLAN IN PHASES!

USE YOUR IMAGINATION!

WILL YOUR INVESTMENT IN INFRASTRUCTURE PAY FOR ITSELF?!

- What are the benefits of investing in well-designed paddocks and water systems?
 - Forage production
 - Livestock distribution and forage utilization
 - Labor efficiency
 - Better control of livestock

- How do you calculate return on this investment?
 - Simple payback period
 - Cost of fence
 - Gross margin per cow
 - Increase in stocking rate

SIMPLE PAYBACK PERIOD

1 mile portable electric fencing (w/ energizer) – \$1,500

Gross margin per cow – \$250

Increase stocking rate by 4 cows

Simple Payback Period = 1.5 years

Alternatively, what if fencing reduced labor by 10 hours/month?

Block Design

Block Design

Wagon Wheel Design

12 paddocks radiating out from a cell center

8 paddocks radiating out from a cell center with a water point.

Cell center perimeter ≈ 5 yards from trough.

Ignore Existing Facilities

Cell center built around existing water trough?

Ignore existing facilities!

HOW MANY CELLS?

- Number of herds
- Size and carrying capacity of the property
- Physical constraints
- Management Constraints

DESIGN PROCEDURE

• Site the centers

- Sketch in the cell boundaries
- Draw in paddock fences
- Draw in existing fences and facilities
- Make adjustments

DESIGN PROCEDURE – SITE CENTERS

SKETCH CELL BOUNDARIES

DRAW IN PADDOCK FENCES

DRAW IN EXISTING FENCES

MAKE ADJUSTMENTS

FENCING SYSTEMS

Portable and Permanent Fencing Options

ELECTRIC FENCING SYSTEMS

The effectiveness of any electric fence depends on the ability of that fence to deliver a painful shock to animals that touch it.

- Effective electric fencing systems:
 - Energizer
 - Grounding system
 - Fence design
 - Training the animals

FENCE THE DESIRE!

There's never been a fence in the history of mankind that could keep a hungry animal contained where there is no feed!

ELECTRIC FENCE 101

Learning the Basics of Electric Fencing

BASIC ELECTRICAL TERMS

- AC Alternating current, mains, 110/220v plug
- DC Direct current, battery
- Amps electrical rate of flow 1 amp = 1 volt / 1 ohm
- Ohms electrical resistance 1 ohm = 1 volt / 1 amp
- Volts electrical pressure 1 volt = 1 ohm x 1 amp
- Watts rate of doing the work 1 watt = 1 amp x 1 volt
- Joules electrical energy (measure of the power of an energizer)
- Output Joules energy delivered to fence (usually about 1/3 less than stored joules)
- Stored Joules energy in the energizer

BASIC ELECTRICAL TERMS (CONT.)

- Load loss of voltage, anything that draws power from the energizer, measured in ohms
- Short large energy loss from fence line to the earth (ground). Total short circuit = 0 ohms.
- Leakage small energy loss from fence (*i.e., weeds* touching the line, faulty insulator, etc.)
- Low impedance In effect, the internal resistance of an energizer. Allows maximum energy to be transferred to the fence.

HOW AN ELECTRIC FENCE WORKS

- 1. Energizer generates high voltage pulses
- 2. Animal touches live wire
- 3. Animal receives painful shock by completing the electrical circuit back to the energizer via the earth (ground) system

Whole process takes about 0.3 milliseconds!

FENCE ENERGIZER

- Regulates the flow of electricity
- Electrons are stored and the released in a pulse
- Good energizer will have a pulse lasting for .0003 seconds
- Low impedance energizers resist leakage of current
- Power source can be AC or DC
- Overcome loads fence network itself and animals or vegetation touching the fence

HOW MANY JOULES DO YOU NEED?

Minimum Recommended Joule Rating	Miles of electrified wire
1	6
2	12
3	18
4	24

ENERGIZER PERFORMANCE

Model	1000	36000RS	
Output	1J	36J	
Size	Small-Range	Large-Range	
Range	40 acres	2,500 acres	
Open Circuit	9,800V	9,500V	
1000 ohm load	7,000V	8,800V	
500 ohm load	5,300V	8,500V	
100 ohm load	1,800V	8,000V	

NOTE: Both energizers will produce over 8,000 volts. The difference is the amount of load (resistance) that each energizer can overcome. A larger energizer produces more energy to overcome bigger loads.

* An electric fence is like a water pump *(energizer)* and a pipe *(fence wire)* with water *(voltage)* flowing through it!

VOLTMETERS

GROUNDING

GROUNDING

POWER UNDER GATES

Always use 2.5mm cable /more conductive than 1.6

BI-POLAR GROUNDING

- Reduces ground system requirements to 1 ground rod
- Excellent control in even poor / dry soil conditions
- 100% delivery all available energy goes into shocking animal
- No neutral wires animal always shocked (5kV one wire / 10kV two wires)
- Delivers the <u>SAME</u> shock in the worst soil conditions that would be available in the best soil conditions with conventional grounding

FENCE MATERIALS

- Hi-Tensile Wire (galvanized) 12.5 and 16 gauge larger the diameter, less resistance and better carrying capacity
- Hi-Tensile Fixed Wire
- Polywire
- Polytape
- Polyrope
- Netting

HI-TENSILE WIRE

BASIC CONSTRUCTION - BRACE

- Post Type Wood, Metal Pipe
- Wire Type 12.5 ga. high tensile
- Use on corners and along line line braces should be no more than 1320 ft apart

US FOREST SERVICE BRACE

PERMANENT FENCES

- Perimeter, boundary
- Lasts 30-40 years
- Typically steel wire
- Short or long distance
- 2-7 wires depending on livestock/predator type
- Corner braces wood or metal pipe
- Line t-posts, rod, wood
- Renovate existing conventional fences with offsets/extenders

- Line Post Wood, Metal Pipe, T-Post
- 15' 30' between posts depending on terrain, number of turns in fence line, or use of stays/droppers
- Smaller spacings for smaller animals

TEMPORARY FENCES FOR CATTLE

- Divide pasture/paddock
- Portable
- Poly wire, tape, etc.
- Short distances
- 1-3 wires
- Pigtail / plastic tread-ins
- Rotational grazing, protect hay bales, graze wheat fields / corn stalks, riparian pastures
- Quick & easy to build

POLYTAPE AND WIRE

ELECTRO-NETTING

LIVEWIRE FENCE – PENN VALLEY 530-432-8028

STOCKWATER SYSTEMS

Improving Utilization and Distribution through Stockwater Development

PUMPING WATER

RAM PUMPS

NOSE PUMP

WATER PUMP AND TROUGH

WATER LOCATION

- Cattle can travel 1.5 2 miles in gentle terrain and 1 mile in steep terrain to water with minimal stress
- When distances to water are over 1000 feet, the forage utilization will not be evenly distributed
- Less than 1000 feet to a water point will result in animals watering individually
- The greater the distance past 1000 feet, the tendency will be for the whole herd to water

WATER QUANTITY

Cattle Wt	40°F	50°F	60°F	70°F	80°F	90°F		
LACTATING COWS								
900-1200 LBS	11.4 g/day	12.6 g/day	14.5 g/day	16.9 g/day	17.9 g/day	18.2 g/day		
DRY COWS								
1100 LBS	6.0 g/day	6.5 g/day	7.4 g/day	8.7 g/day	9.1 g/day	9.3 g/day		
MATURE BULLS								
1600+ LBS	8.7 g/day	9.4 g/day	10.8 g/day	12.6 g/day	14.5 g/day	20.6 g/day		
GROWING HEIFERS, STEERS, BULLS								
400 LBS	4.0 g/day	4.3 g/day	5.0 g/day	5.8 g/day	6.7 g/day	9.5 g/day		
600 LBS	5.3 g/day	5.8 g/day	6.6 g/day	7.8 g/day	8.9 g/day	12.7 g/day		
800 LBS	7.3 g/day	7.9 g/day	9.1 g/day	10.7 g/day	12.3 g/day	17.4 g/day		

- Source: 1996 NRC Nutrient Requirements of Beef Cattle
- Water intake is a function of dry matter intake and ambient temperature. Water intake is constant up to 40°F.

DESIGN CONSIDERATIONS

- Storage capacity
 - In trough
 - Additional tank or storage
- Recharge rate how fast will the trough refill?
- Space how many animals are likely to drink at the same time
 - Can be managed by distance between troughs
 - Provide 27-39" of trough space per head expected to drink at one time.
 - Round troughs provide more storage, rectangular troughs provide more drinking space.

WATER STORAGE

WATER QUALITY

- Potential Problems
 - High concentration of minerals
 - High concentration of nitrogen
 - Bacterial contamination
 - Algal growth
 - Toxic chemical spills

WATER TROUGHS

WATER TROUGHS

