Sprayer Calibration

Tom Getts UCCE Advisor

Some Slides Courtesy of: Lynn Wunderlich and Franz Niederholzer

Calibration

Uniform pesticide application

- Approximately +- 5%
- Application rate
 - Quarts/acre
 - Pounds/acre

Calibration

• Example Milestone- 7 fl oz/acre

- 7 oz = Little more than ½ a can of beer
- 1acre=little less than football field (no endzones)
 - (43,560^2 vs 48,000ft^2)

Calibration

- Example Milestone- 7 fl oz/acre
 - 7 oz = Little more than ½ a can of beer
 - 1acre=little less than football field (no endzones)
 - (43,560^2 vs 48,000ft^2)
- Need to spread thin
- Mix in water-(sometimes oil)

Why Calibrate?

- Efficacy of application
 - Poor weed control vs Crop damage
- Delay resistance
- Legal- following label rate
 - Protect environment
 - Protect you
 - Ensure success

Why Calibrate?

- Labor expensive!
- Pesticides EXPENSIVE!
 - 20 oz of Chlorsulfuron (Telar generic) \$379
 - 2.5 gallons Habitat- \$319
 - 2.5 gallons Milestone-\$870 (45 acres \$19/acre)

- Volume/area=Application rate
 - Gallons/acre
 - Liters/hectacre

- Volume/area=Application rate
 - Gallons/acre
 - Liters/hectacre
- Gallons/acre= Flow rate(gal/time) / Land rate(acres/time)


- Volume/area=Application rate
 - Gallons/acre
 - Liters/hectacre
- Gallons/acre= Flow rate(gal/time) / Land rate(acres/time)
- Speed
- Pressure
- Orifice size

Step One

- Nozzle Selection
- What are you spraying?
 - Contact pesticide?
 - Systemic pesticide?
 - Target Gallons/acre?
 - Droplet Size?

Can you tell what flow rate this nozzle should deliver?

110 03

Can you tell what flow rate this nozzle should deliver?

This XR (extended range) flat fan nozzle is a 11003. It should deliver 0.3 gallons per minute at 40 psi with a spray angle of 110°. The VS stands for "visiflow", the nozzle body material (visiflow plastic).

Flow Rate

- Volume of liquid / Time
 - Nozzle orifice size
 - Number of nozzles
 - Pressure
 - Viscosity (oil vs water)

XR Teefet Extended Range Flat Spray Tips

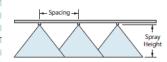
Typical Applications:

See selection guide on page 4 for recommended typical applications for XR TeeJet tips.

Features:

- Excellent spray distribution over a wide
- Ideal for rigs equipped with sprayer controllers.
- Reduces drift at lower pressures, better coverage at higher pressures.
- Available in stainless steel, ceramic and polymer in 80° and 110° spray angles with VisiFlo® color-coding.

- Ceramic is available with corrosiveresistant polypropylene VisiFlo colorcoded tip holder in 80° capacities 03-08 and 110° capacities 02-08.
- XR110025 only available in VK.
- XR80025 and XR80035 only available in VS.
- Brass available in 110° only.
- Automatic spray alignment with 25612-*-NYR Quick TeeJet* cap and gasket. Reference page 64 for more information.
- Automatic spray alignment for sizes 10 and 15 with 25610-*-NYR Quick TeeJet cap and gasket. Reference page 64 for more information.


At 15 PSI (1 bar) At 60 PSI (4 bar) Pressure Pressure

CONTACT PRODUCT	SYSTEMIC PRODUCT	DRIFT MANAGEMENT				
EXCELLENT	GOOD	GOOD				
GOOD* VERY GOOD* VERY GOOD*						
*At pressures below 30 PSI (2.0 bar)						

Optimum Spray Height

Δ	<u>1</u> 20°
80°	30"
110°	20"
	•

How to order: Stainless Steel with VisiFlo color-coding The catalog has a lot of information on droplet size and gallons per acre -at a given pressure- at typical spacing and travel speeds.

	A (!)	\odot		IOP ZE	CAPACITY	CAPACITY ONE NOZZLE												
	(6)	PSI			NOZZLE IN GPM	IN		GPA					GALLONS PER 1000 SQ. FT.					
			80°	110-		OZ/MIN.	4 MPH	5 MPH	6 MPH	8 MPH	10 MPH	12 MPH	15 MPH	20 MPH	2 MPH	3 MPH	4 MPH	5 MPH
	VDeese	15 20	E	E	0.061	7.8	4.5	3.6	3.0	2.3	1.8 2.1	1.5 1.8	1.2 1.4	0.91	0.21	0.14	0.10	0.08
	XR8001	20	F	F	0.071	9.1 11	5.3	4.2	3.5	2.6	2.1	1.8	1.4	1.1	0.24	0.16	0.12	0.10
	XR11001	40		Ē.	0.10	13	7.4	5.9	5.0	3.7	3.0	2.5	2.0	1.5	0.30	0.23	0.17	0.14
	(100)	50	FFF	F	0.11	14	8.2	6.5	5.4	4.1	3.3	2.7	2.2	1.6	0.37	0.25	0.19	0.15
		60		VF	0.12	15	8.9	7.1	5.9	4.5	3.6	3.0	2.4	1.8	0.41	0.27	0.20	0.16
	XR80015	15 20	F	Ę.	0.092	12 14	6.8 8.2	5.5 6.5	4.6 5.4	3.4	2.7	2.3	1.8 2.2	1.4	0.31	0.21	0.16	0.13
		30	Ē.	È.	0.13	17	9.7	7.7	6.4	4.8	3.9	3.2	2.6	1.9	0.44	0.29	0.22	0.18
	XR110015	40	F	F.	0.15	19	11.1	8.9	7.4	5.6	4.5	3.7	3.0	2.2	0.51	0.34	0.26	0.20
	(100)	50	F	E	0.17	22	12.6	10.1	8.4	6.3	5.0	4.2	3.4	2.5	0.58	0.39	0.29	0.23
		60	M	M	0.18	23	13.4 8.9	10.7	8.9 5.9	6.7 4.5	5.3 3.6	4.5	3.6	2.7	0.61	0.41	0.31	0.24
	XR8002	20	M	F	0.14	18	10.4	8.3	6.9	5.2	4.2	3.5	2.8	2.1	0.48	0.32	0.24	0.16 0.19
	XR11002	30	F	F	0.17	22	12.6	10.1	8.4	6.3	5.0	4.2	3.4	2.5	0.58	0.39	0.29	0.23
		40	F	E	0.20	26	14.9	11.9	9.9	7.4	5.9	5.0	4.0	3.0	0.68	0.45	0.34	0.27
	(50)	50 60	E.	F	0.22	28 31	16.3 17.8	13.1 14.3	10.9	8.2 8.9	6.5	5.4	4.4	3.3	0.75	0.50	0.37	0.30
		15	M	M	0.15	19	11.1	8.9	7.4	5.6	7.1	5.9	3.0	3.6	0.51	0.34	0.26	0.33
	XR80025	20	M	M	0.18	23	13.4	10.7	8.9	6.7	5.3	4.5	3.6	2.7	0.61	0.41	0.31	0.24
	XR110025	30	F	E	0.22	28	16.3	13.1	10.9	8.2	6.5	5.4	4.4	3.3	0.75	0.50	0.37	0.30
	(50)	40 50	F	F	0.25	32	18.6	14.9	12.4	9.3	7.4	6.2	5.0	3.7	0.85	0.57	0.43	0.34
	(50)	60	F	E	0.28	36 40	21 23	16.6 18.4	15.3	10.4	9.2	7.7	6.1	4.2	1.1	0.63	0.48	0.38
j		15	M	M	0.18	23	13.4	10.7	8.9	6.7	5.3		3.6	2.7	0.61	0.41	0.31	0.24
	XR8003	20	Μ	м	0.21	27	15.6	12.5	10.4	7.8	6.2	4.5 5.2	4.2	3.1	0.71	0.48	0.36	0.24 0.29
	XR11003	30 40	F	F	0.26 0.30	33 38	19.3 22	15.4 17.8	12.9 14.9	9.7	7.7	6.4 7.4	5.1 5.9	3.9 4.5	0.88	0.59	0.44	0.35
	(50)	50	F	F	0.30	44	25	20	16.8	12.6	10.1	8.4	6.7	5.0	1.2	0.88	0.58	0.46
	(50)	60	F	Ē.	0.37	47	27	22	18.3	12.6 13.7	11.0	9.2	7.3	5.5	1.3	0.84	0.63	0.50
		15	Μ		0.21	27	15.6	12.5	10.4	7.8	6.2	5.2	4.2	3.1	0.71	0.48	0.36	0.29
	XR80035	20 30	M		0.25	32 38	18.6 22	14.9 17.8	12.4	9.3 11.1	7.4	6.2 7.4	5.0 5.9	3.7 4.5	0.85	0.57	0.43	0.34
		40	M		0.30	45	26	21	17.3	13.0	10.4	8.7	6.9	4.5	1.2	0.68	0.60	0.41
	(50)	50	F		0.39	50	29	23	19.3	14.5	11.6	9.7	7.7	5.8	1.3	0.88	0.66	0.53
		60	F		0.43	55	32	26	21	16.0	12.8	10.6	8.5	6.4	1.5	0.97	0.73	0.58
	XR8004	15	<u>c</u>	M	0.24	31	17.8	14.3	11.9 13.9	8.9 10.4	7.1	5.9 6.9	4.8	3.6	0.82	0.54	0.41	0.33
		20 30	M	M	0.28	36 45	21 26	16.6 21	17.3	13.0	8.3 10.4	8.7	6.9	4.2 5.2	1.0	0.63	0.48	0.38
	XR11004	40	M	M	0.40	51	30	24	19.8	14.9	11.9	9.9	7.9	5.9	1.4	0.91	0.68	0.54
	(50)	50	E	E	0.45	58	33	27	22	16.7	13.4	11.1	8.9	6.7	1.5	1.0	0.77	0.61
		60 15		M	0.49	63 40	36	29	24	18.2	14.6	12.1	9.7	7.3	1.7	1.1	0.83	0.67
	XR8005	20	ç	M	0.35	40	26	21	17.3	13.0	10.4	8.7	6.9	5.2	1.2	0.79	0.53	0.42
		30	M	M	0.43	55	32	26	21	16.0	12.8	10.6	8.5	6.4	1.5	0.97	0.73	0.58
	XR11005	40	Μ	м	0.50	64	37	30	25	18.6	14.9	12.4	9.9	7.4	1.7	1.1	0.85	0.68
	(50)	50	M	E	0.56	72	42	33	28	21	16.6	13.9	11.1	8.3	1.9	1.3	0.95	0.76
		60 15	C	C	0.61 0.37	78 47	45 27	36	30 18.3	23	18.1	15.1 9.2	12.1 7.3	9.1 5.5	2.1	1.4 0.84	1.0	0.83
	XR8006	20	č	M	0.42	54	31	25	21	15.6	12.5	10.4	8.3	6.2	1.4	1.0	0.71	0.57
	XR11006	30	M	M	0.52	67	39	31	26	19.3	15.4	12.9	10.3	7.7	1.8	1.2	0.88	0.57
		40	м	м	0.60	77	45	36	30	22	17.8	14.9	11.9	8.9	2.0	1.4	1.0	0.82
	(50)	50 60	M	M	0.67	86 93	50 54	40 43	33 36	25 27	19.9 22	16.6 18.1	13.3 14.5	9.9 10.8	2.3	1.5	1.1	0.91 0.99
ľ		15		с	0.49	63	36	29	24	18.2	14.6	12.1	9.7	7.3	1.7	1.1	0.83	0.99
	XR8008	20	VC VC	ç	0.57	73	42	34	28	21	16.9	14.1	11.3	8.5	1.9	1.3	0.97	0.78
		20			0.60	99	51	41	24	76	20	171	127	10.2	23	16	12	0.04

Specify tip number. Examples: XR8004VS

Even if you have the manufacturer's listed rate from the catalog, it's still a good idea to measure the *actual* flow rate from the nozzle (*why might these differ*?)

Always good to measure!

• Worn nozzles

Always good to measure!

- Worn nozzles
 - 50 hours brass
 - 10-15% increase in flow rate
 - 50 hours steel
 - 2% increase flow rate

Always good to measure!

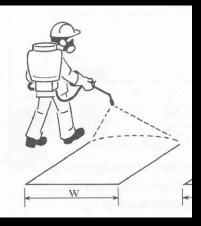
• Worn nozzles

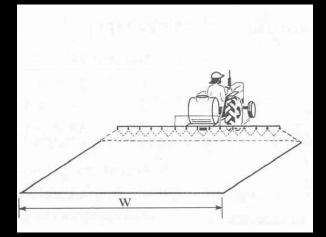
- 50 hours brass
- 10-15% increase in flow rate
- 50 hours steel
- 2% increase flow rate
- Clogged nozzles
- Incorrect pressure
- Hose lengths

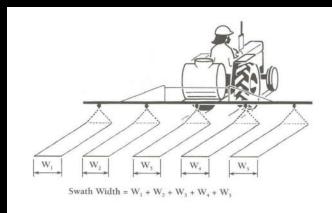
Tools you will need to measure flow rate.

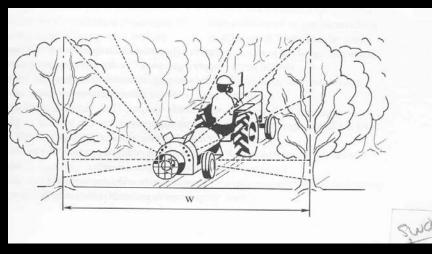
Plus or minus 5%!

- Important to measure
- Average output of each nozzle
- Help detect worn/clogged nozzles


How to change flow rate?


- Increase or decrease pressure
- Change nozzle orifice size


Land Rate


- Speed*Swath = land rate
- How fast you cover "land"

Swath measurements

Swath

- Effective boom width
 - Nozzle spacing
 - Number of nozzles
 - Example
 - 6 nozzle's*20 inch spacing=120inches=10 ft. boom width

Speed

• ATV/tractor-test speedometer

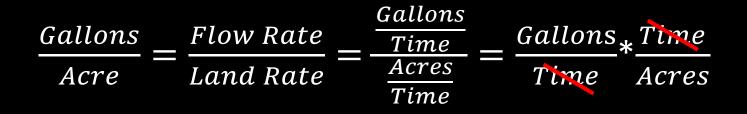
- Drive over application area
- Fill spray tank half full (exact volume known)
- GPS
- Stopwatch distance
- Tractor Mark Gears/RPM

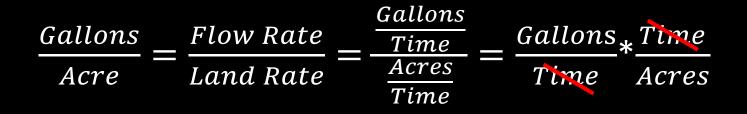
Speed

• ATV/tractor-test speedometer

- Drive over application area
- Fill spray tank half full (exact volume known)
- GPS
- Stopwatch distance
- Tractor Mark Gears/RPM
- Walking consistent speed
 - Metronome

How to change land rate


• Alter speed


 $\frac{Gallons}{Acre} =$

 $\frac{Gallons}{Acre} = \frac{Flow Rate}{Land Rate}$

		Gallons			
Gallons	_ Flow Rate _	Time			
Acre	$\overline{}$ Land Rate $\overline{}$	Acres			
		Time			

Gallons	Flow Rate	Gallons Time	Gallons	*
Acre	 Land Rate	Acres Time	Time	Acres

- Gallons/acre
- Figure out how much pesticide to add to the tank!

How much pesticide goes in tank?

- 180 gallon/tank=Tank Size
- 15 gallons/acre= Application volume
- Desired application rate= 1.5oz Telar/acre
- How much Telar do you put in tank?

1 acre		180 gallons	
15 gallons	ች	1 tank	

1 acre	180 gallons	12 acres
15 gallons	1 tank	1 tank

1 acre	180 gallons	12 acres
15 gallons [^]	1 tank	1 tank

1.5 oz Telar_{*}12 acres 1acre 1 tank

1 acre	180 gallons	12 acres
15 gallons	1 tank	1 tank

1.5 oz Telar1.5 oz Telar12 acres18oz Telar1acre1 tank1 tank

Outside

- Calibrate ATV and Backpack
 - Principles will work for all sprayers

Data to collect ATV

- Land Rate
 - ATV Speed
 - ATV Swath width
- Flow Rate
 - Pressure
 - Nozzle size
 - Nozzle output per minute
 - Three nozzles- average output
 - +- 5%

Data to collect for backpack

- Math less! kinda...
- 43,560ft^2 in acre
- 128 oz in gallon
- 43560/280=340ft.^2
- Time to spray 18.5*18.5 area (304 ft.^2)
- Volume sprayed over time

Outside!

Conversions you may find useful

- 1 mile=5280 ft.
- 1 acre=43560 ft^2
- 1 gallon=128 fl oz
- 1 oz=29.57 ml
- 1 hour= 3600 seconds

ATV Sprayer

- Speed?
- 100 feet- how fast in seconds?
- We are interested in Area....

ATV Sprayer

- Boom Width
 - 3 nozzles
 - 20 inch Spacing
 - 3*20=60 inches
 - 60 inches=5 foot spray width
- Area Sprayed
 - 100 ft. long
 - 5 ft. wide
 - 500 Sq feet area sprayed in X seconds

Flow Rate

- 15 seconds collect nozzles
 - (go to excel sheet to do math)
 - Note pad

Lots of worksheets you can use

Grower:	nz Niederholzer and John Sprayer:	Roncoroni, UCCE Farm Advisor: Date:
Grower.	Sprayer.	Date.
Universal Equation	(This formula works for	all applications)
Application Rate (gal./sq. ft.) =	Flow Rate (gal./min.) ÷	
	Land Rate: speed (ft./	(min.) × width (ft.)
Application Rate (gal./acre)=	Flow Rate (gal./min.)	+
	Land Rate (acre/min.	
Swath width must correlat	te to the coverage of the	nozzle flow rate measured.

Manifold Nozzle	Nozzle	the manufacturer's catalog PSI:	Actual PSI:
left or rt. Type	size	CATALOG Rated Output (gal/min	
1			
2			
3			
4			
5			
6			
TOTAL	gal/min =	gal./min. <i>Catalog</i> total flow	gal./min. <u>Actual</u> total flow rate
1B. Measure act	ual sprayer o	utput	
1. Park sprayer on le			
2. Fill tank about 1/2	2 full		

3. Turn on sprayer with nozzles open and adjust pressure to operating pressure

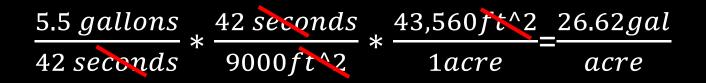
4. Open nozzle, place cup underneath to catch the flow

- Fill sprayer half way
- Spray area
- Measure how much liquid was used!

- Tractor sprayer
 - 30 ft. boom
 - 20 inch spacing
 - 18 nozzles
 - 11004 flat fan
 - 250 gallon tank
- Want to spray 2 qt's Roundup/acre over 160 acres

- Book says
 - 40 PSI
 - 11004 Nozzle will flow at .4 gallons per minute
 - 12.8oz -15 seconds
 - 24 gallons/acre at 5mph

- Fill tank half way up- spray for 300 feet
- Takes 42 seconds


- Fill tank half way up- spray for 300 feet
- Takes 42 seconds
- Land rate= 30 ft boom* 300 ft/ 42 seconds
- Land rate= 9000ft^2/42seconds

- Need flow rate
- Measure how much water was sprayed
- Fill tank back to halfway mark

- Need flow rate
- Measure how much water was sprayed
- Fill tank back to halfway mark
- 5.5 gallons sprayed
- So flow rate= 5.5 gallons/42 seconds

- So application rate?
- Land rate= 9000ft^2/42seconds
- So flow rate= 5.5 gallons/42 seconds
- 1 acre=42,560ft^2

 $\frac{5.5 \ gallons}{42 \ seconds} * \frac{42 \ seconds}{9000 ft^{2}} * \frac{43,560 ft^{2}}{1 \ acre} =$

- 2 qt's per acre
- 250 gallon tank
- How much to put in?

- 2 qt's per acre
- 250 gallon tank
- How much to put in?
- $\frac{1 \ acre}{26.2 \ gal} * \frac{250 \ gal}{1 \ tank} = -$

- 2 qt's per acre
- 250 gallon tank
- How much to put in? $\frac{1 \ acre}{26.2 \ gal} * \frac{250 \ gal}{1 \ tank} = \frac{9.54 \ acres}{1 \ tank}$

- 2 qt's per acre
- 250 gallon tank
- How much to put in? $\frac{1 \ acre}{26.2 \ gal} * \frac{250 \ gal}{1 \ tank} = \frac{9.54 \ acres}{1 \ tank} * \frac{2qt \ roundup}{1 \ acre} = -$


- 2 qt's per acre
- 250 gallon tank
- How much to put in? $\frac{1 \ acre}{26.2 \ gal} * \frac{250 \ gal}{1 \ tank} = \frac{9.54 \ acres}{1 \ tank} * \frac{2qt \ roundup}{1 \ acre} = \frac{19.08 \ qt \ r}{1 \ tank}$

- 1 Acre = 43560 ft^2
- 1 gallon = 128oz
- 43560/128 = 340 ft^2
- So number of oz used to cover 340 ft^2 = Gallons/acre!
- Time application, and collect liquid

No math

 $\frac{440z}{340.31 ft^{2}} * \frac{1 gallon}{1280z} * \frac{42560 ft^{2}}{1 acre} =$

No math

How else can you get 340 ft²?

• 10 feet*34 feet =340

- 10 feet*34 feet =340
- What about bigger sprayers?
- 20 inch spacing
- 20/12=1.66666 feet
- 340/1.66666=204 feet

- 20 inch spacing
- Seconds to travel 204 feet
- Collect spray volume 1 nozzle
- Number oz=gallons per acre

Stationary Method

• Speed miles per hour to seconds to cover 204 feet

• $\frac{5 \text{ miles}}{1 \text{ hour}} * \frac{1 \text{ hour}}{60 \text{ minute}} * \frac{1 \text{ minute}}{60 \text{ seconds}} * \frac{5280 \text{ ft}}{1 \text{ mile}}$

Stationary Method

• Speed miles per hour to seconds to cover 204 feet

• $\frac{5 \text{ miles}}{1 \text{ hour}} * \frac{1 \text{ hour}}{60 \text{ minute}} * \frac{1 \text{ minute}}{60 \text{ seconds}} * \frac{5280 \text{ ft}}{1 \text{ mile}} \frac{7.333 \text{ feet}}{1 \text{ second}}$

• $\frac{1 \text{ second}}{7.333 \text{ feet}}$ *204 feet=

Stationary Method

• Speed miles per hour to seconds to cover 204 feet

• $\frac{5 \text{ miles}}{1 \text{ hour}} * \frac{1 \text{ hour}}{60 \text{ minute}} * \frac{1 \text{ minute}}{60 \text{ seconds}} * \frac{5280 \text{ ft}}{1 \text{ mile}} \frac{7.333 \text{ feet}}{1 \text{ second}}$

•
$$\frac{1 \ second}{7.333 \ feet}$$
 * 204 feet=27.8 seconds

 On 20 inch spacing, 5 miles per hour, need to collect liquid for 27.8 seconds to get sprayer output