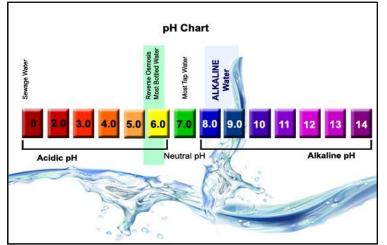
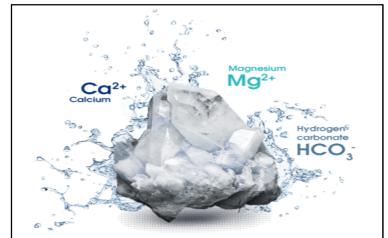

Spray Water Quality: An Important Consideration for Herbicide Application

Pratap Devkota UCCE Weed Science Farm Advisor, Imperial County 10/31/2017

Water: The Major Solvent

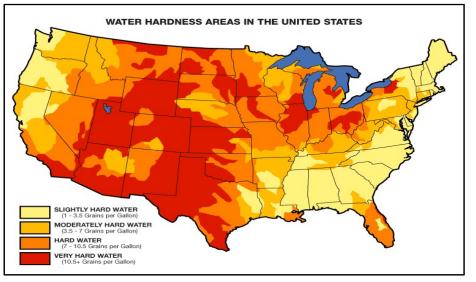

- Water is the primary solvent comprises >99% of the herbicide spray solution
- Spray water factors:
 Temperature, turbidity, pH, and hardness
- Inappropriate spray water negative effect on herbicide



Spray Water Quality

- Turbidity:
 - Amount of suspended particle: inorganic (sand, silt, clay) and organic matter
- pH:
 - ≻Acidity: H⁺ ions
 ≻Alkalinity: OH⁻ ions
- Hardness: Amount of dissolved minerals.
 - Calcium, magnesium, iron, zinc, aluminum, sodium, potassium

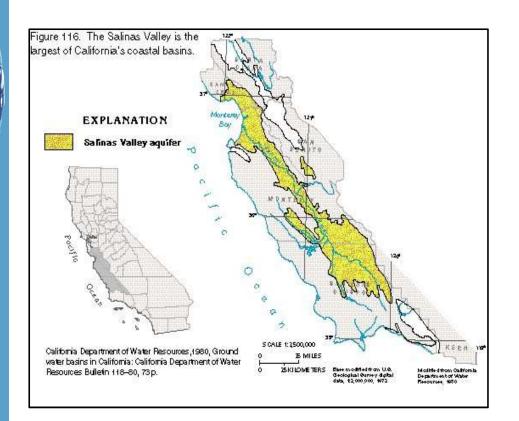
https://www.gerolsteiner.de


Spray Water Quality

Spray water quality varies

00

0


- ➤Geographical variation
- Spray water hardness varies in the US
 - Slightly hard to very hard water

Water Hardness Scale/Classification				
Classification	Mg/L (PPM)	Grains/Gal		
Soft	<17.1	<1		
Slightly Hard	17.1 – 60	1- 3.5		
Moderately Hard	60 - 120	3.5 - 7		
Hard	120 – 180	7 - 10		
Very Hard	>180	>10		

http://water.usgs.gov/owq/hardness-alkalinity.html

Spray Water Quality at Salinas Valley

Groundwater in Salinas Valley		
Source	Value	
Water pH	7.5 - 8	
Water hardness (ppm)	50 - 200	

Saying It Loud

- Carrier water in this region:
 - ≻Alkaline pH
 - Moderately hard hard
- Should we be concerned about compromising herbicide efficacy?

Spray Water Quality

What does spray water quality research tell us?

 What do we know about effect of spray water temperature, turbidity, pH, and hardness on herbicide efficacy?

Spray Water Temperature & Herbicide efficacy

Limited research on this topic

000

 Herbicide performance was reduced at colder (42 F) and warmer (130 F) water temperature

Optimum temperature was 65 to 100 F

Response was variable with weed species

Spray Water Temperature & Herbicide efficacy

Reason not fully understood

Effect could be:

Cold water affecting herbicide droplet size

Warm water affecting herbicide molecule breakdown

http://sepn.com.au/embedded-cold-water-networks/

Water Turbidity

- Effect of turbidity depends on K_{oc} value of a herbicide
 - >How strongly herbicide adsorb to the soil particle

- Turbidity affects performance of herbicide which has low mobility in the soil
 - Herbicide tie up with the solid particles present in the turbid water

K _{oc} Value and Water Turbidity Effect on Alfalfa Herbicides				
Herbicides	K _{oc} value (ml/g)	Effect of water turbidity		
Poast (sethoxydim), Sandea (halosulfuron)	< 440	Low		
Roundup (glyphosate)	24,000	High		
Gramoxone (paraquat)	1,000,000	Very high		

0°

0 00

0.0

0 0

0

е 20 2

> V ja

0

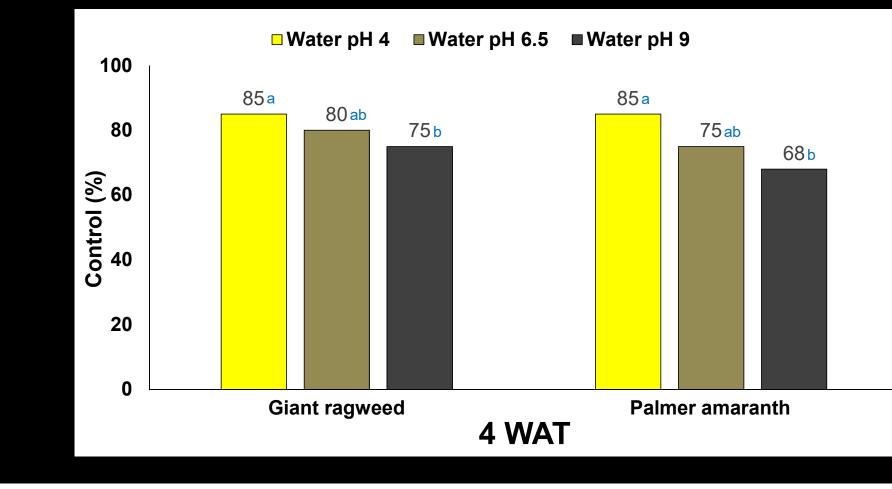
, ()

0

4

0.0

http://anrcatalog.ucanr.edu/pdf/8161.pdf


Spray Water pH

Rely (glufosinate): 29 oz/A

0.0

C

0

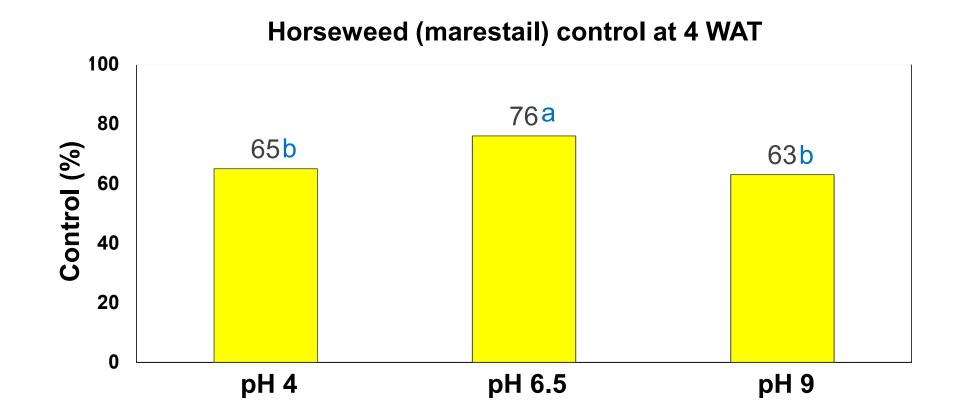
Spray Water pH and Glufosinate Herbicide

Spray Water pH – Pursuit + Raptor Herbicide				
Treatment	Spray water pH	Red rice control with mixture of Pursuit + Raptor herbicide		
		20 DAA	30 DAA	
Water source 1	9.4	90 c	89 c	
Water source 1	4.5	98 a	99 a	
Water source 2	8.7	86 c	88 c	
Water source 2	4.5	96 ab	98 a	
Water source 3	5.1	88 c	90 c	
Water source 3	4.5	95 b	97 ab	
Hand weeding	-	98 a	98 a	

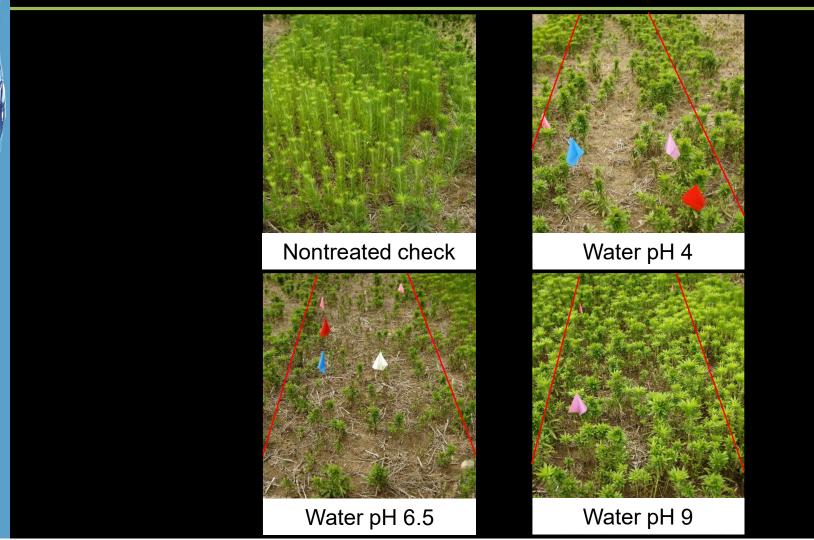
0

0

0 0


0

Sanchotene et al. 2007


Carrier Water pH and Callisto Herbicide Efficacy

Callisto (mesotrione): 3 oz/A

0,0

Carrier Water pH and Callisto (Mesotrione) Herbicide

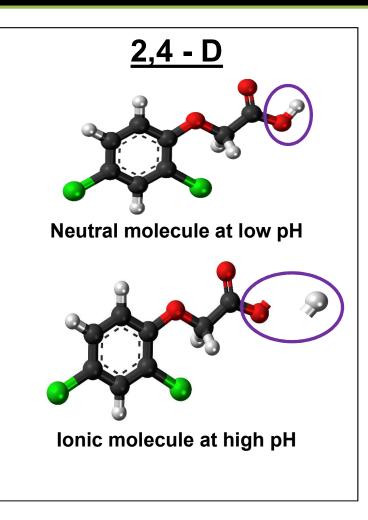
Spray Water pH and Sharpen Herbicide Efficacy

Table 1. Control of common lambsquarters and giant ragweed at 14 d after application when saflufenacil was applied in water at five different pH levels.^a

000

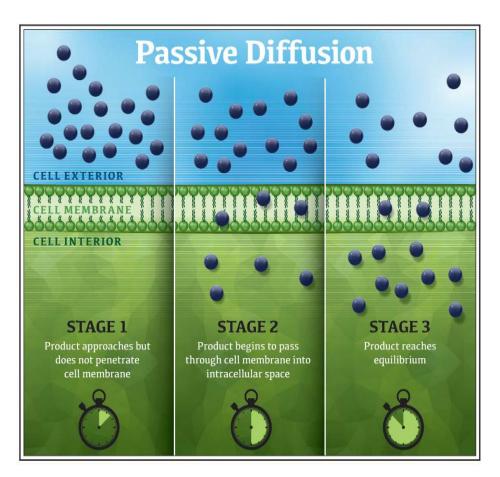
0

0


Weed species	pН	Run 1	Run 2
		% con	trol ^{b,c}
Common lambsquarters	4.0	15 Ь	10 c
•	5.2	17 Ь	20 bc
	6.5	55 a	31 ab
	7.7	71 a	45 a
	9.0	58 a	28 ab
Giant ragweed	4.0	44 c	94 a
0	5.2	47 bc	97 a
	6.5	69 ab	97 a
	7.7	84 a	98 a
	9.0	80 a -	98 a

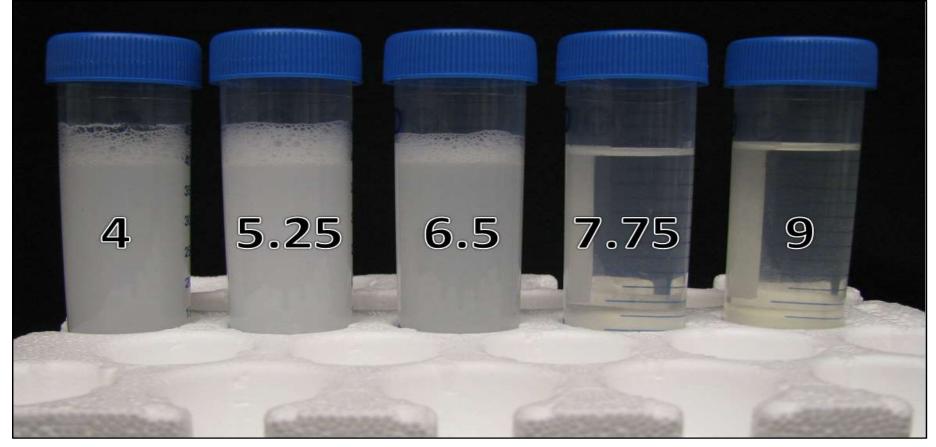
^a Saflufenacil was applied at 12.5 g ai ha^{-1} with ammonium sulfate at 20.37 g L^{-1} and methylated seed oil at 1% v/v.

Roskamp et al. 2013


Science Behind the Scene – Spray Water pH

- Duration for an herbicide remaining stable in water (half-life)
 - Alkaline hydrolysis: weak-acid herbicide dissociate (release H⁺) and form ionic compound at pH >7
 - Weak-acid herbicides: Gramoxone, Poast, Roundup, Select Max
- Physical stability of adjuvants and surfactants used for herbicide product formulation

Science Behind the Scene – Spray Water pH


- Herbicide amount getting into the leaf
 Herbicide untake
 - Herbicide uptake
- Herbicide that is not dissociated in the solution gets more into the plant
 Ionized herbicide have difficulty getting through the leaf barrier and into plant system

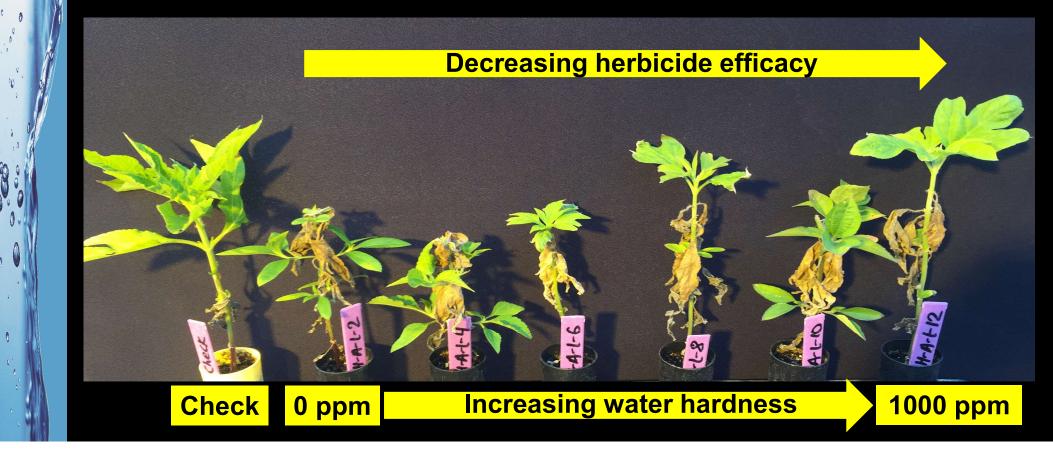
https://www.kglandscape.com

Science Behind the Scene – Spray Water pH

Solubility of herbicide: saflufenacil herbicide

Roskamp et al. (2013), Weed Technol. 27: 527-533

Spray Water Hardness


What about the effect of hard water on herbicide efficacy?

Spray Water Hardness – Glufosinate Herbicide

Giant ragweed control with glufosinate herbicide

0 0

Hard Water Effect - Varies By Mineral

- Glyphosate efficacy reduction by hardness minerals
 - ➢Iron and Aluminum Severe

- ➤Calcium and zinc moderately severe
- ≻Magnesium moderate
- Potassium and Sodium none

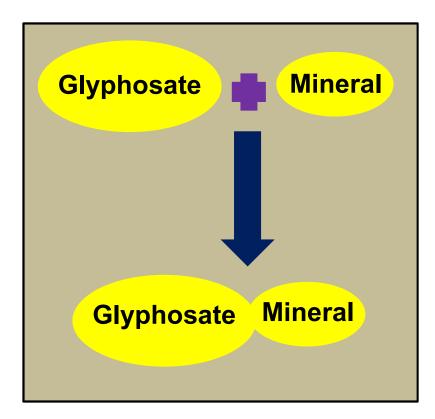
Spray Water Hardness – Pursuit Herbicide

000

0

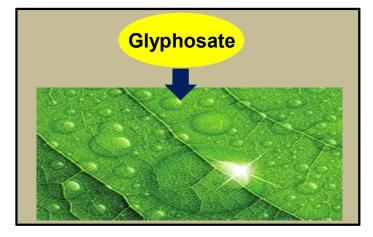
Pursuit (Imazethapyr) needed to control jimsonweed by 90%

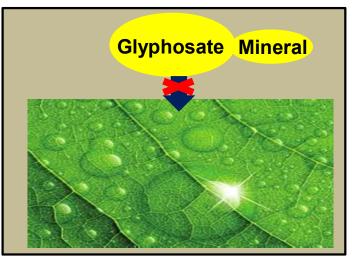
Minerals in spray water	Herbicide needed (g/ha)		
	No AMS	AMS (17 lb/100 gal)	
No mineral	32.34 (± 5.90)	12.33 (± 5.90)	
Magnesium	52.64 (± 3.36)	14.54 (± 1.89)	
Calcium	49.05 (± 8.75)	20.53 (± 2.29)	
Sodium	46.2 (± 3.82)	13.65 (± 2.67)	


Aliverdi et al. 2014

Science Behind the Scene – Spray Water Hardness

 Mineral bind to herbicide molecule


00,0


 Forms stable herbicide-mineral salt complex

Science Behind the Scene – Spray Water Hardness

- Crystalline deposit of herbicidemineral complex on the leaf surface
- Reduced herbicide penetration into the leaf
 - Less herbicide amount gets into the plant

Optimizing Herbicide Spray Solution & Application

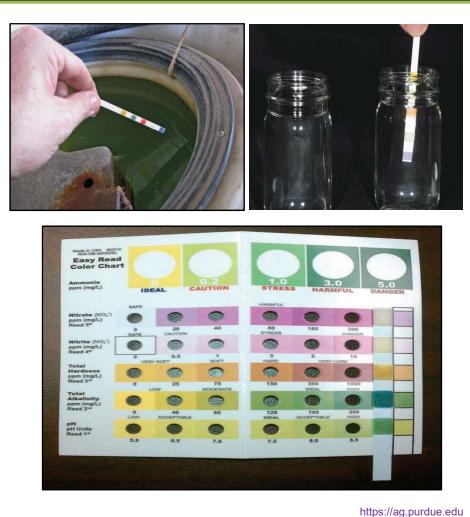
Spray water quality - "A piece of the puzzle"

https://www.lerenverbinden.nl

Optimizing Spray Solution – Water Turbidity

Know the water turbidity:

Turbidity could be variable by season


- Know the herbicide Koc
- Use clean water free of particles

Critical for Gramoxone and Roundup application

Optimizing Spray Solution – Water pH

- Know the water:
 Simple test for acidity/alkalinity
 - ➢Report from water district
- Know the susceptibility of herbicide:
 - Herbicide class and group number?

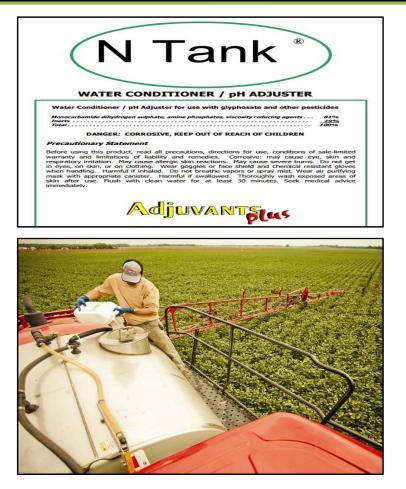
➤Is it a weak-acid herbicide?

Optimizing Spray Solution – Water pH

- Information on the product label:
 - Sometime product label includes some comments and information's

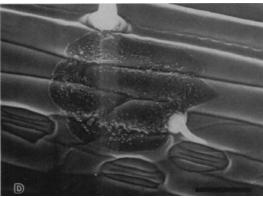
Active ingredient	Example of Trade name	Chemical type	Label mixing notes & comments
Bacillus thuringiensis	Dipel	Insecticide	Use a buffering agent in water with pH greater than 8.5
Carbaryl	Sevin	Insecticide	Do NOT mix with Lime Sulphur, Bordeaux mixture or other alkaline materials
Dimethoate	Dimethoate	Insecticide	Time until half amount of pesticide in water: pH9 = 1 hour; pH6 = 19 hours pH4 = 21 hours*
Diquat and paraquat	Sprayseed	Herbicide	Water should be clean and free from clay, silt and algae. [subject to alkaline hydrosis]
Glyphosate	Roundup	Herbicide	Use only clean water free from soil particles or calcium/magnesium salts (hard water).
			If water is acidic or basic (alkaline) use a recognized buffering agent.
Iprodione	Rovral	Fungicide	Unstable in conditions where pH is 7 or higher. Use a suitable buffering agent to bring pH down below 7.
Maldison	Malthion	Insecticide	Time until half amount of pesticide in water: pH10 = 2 hours; pH8 = 19 hours pH7 = 3 days*
Propargite	Omite	Miticide	Alkaline hydrolysis above pH 7
Trichlorfon	Lepidex	Insecticide	Alkaline hydrolysis under high pH conditions.
			If using with pH of 8 and above use an acidifying surfactant (e.g. L1700)

http://www.dpi.nsw.gov.au/__data/assets/pdf_file/00 08/433691/Water-quality-for-chemical-spraying.pdf

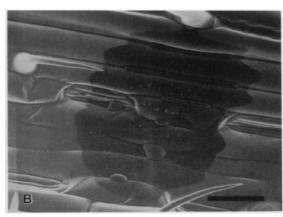

Optimizing Spray Solution – Water pH

Adjust the pH:

➤Use of acidifiers or buffering agents


 Do not delay herbicide application after mixing

Longer the spray solution stored in the tank greater the chance of herbicide molecule converting to ionic form



Optimizing Spray Solution – Water Hardness

- Use of water conditioning adjuvant
 - Ammonium sulfate as water conditioner
 - Prevents herbicide-mineral crystal deposit on the leaf
- Use herbicide at full labeled rate

Hard water minerals bind to glyphosate forming crystals reducing uptake and efficacy

Ammonium sulfate preventing crystals deposit

Optimizing Spray Solution – Water Hardness

- Following the proper mixing procedure
 - ≻Adding water in tank
 - Adding water conditioning adjuvant
 - ≻Adding herbicide
 - Adding surfactant and crop oil

Moving Forward...

C

Thank You.

Contact: Pratap Devkota Phone: 442-265-7708 Email: pdevkota@ucanr.edu