Soil Sampling, Risk Mapping & Exposure Prevention

Second Session of a Three Part Series on Soil Quality/Health

Rob Bennaton UC Cooperative Extension Bay Area Urban Agriculture Advisor

> 510-670-5621 rbennaton@ucanr.edu

Understand Soil Quality to Assess Site-Risk & Manage Soils to **Grow Food & Family Safely**

Objective: Provide Soil Testing & Best Practice Guidance to 个 **Informed Decision Making** that \downarrow Risk of Soil **Contaminant Exposure**

Why should you care about your soil?

Soil Quality → How Your Crops Grow!!!

Some Soils Are Easy To Improve: Plants Grow Best With Proper

Nutrients/Structure/Composition/pH

Dont Guess! Test!!

Some Soils are Harder to Improve: If have Contaminants...

Soil Quality Affects Human/Plant Health →Risk Management: (even in testing)

Home Tests versus Lab Test Results DIY Home Tests \rightarrow Basic Info vs. Lab Tests \rightarrow Reliability & Precision

Where are Soil Contaminants a Concern?

- Agricultural Lands Historical Contaminants can Inhibit Plant Growth/Affect Human Health
- Residential Properties Contaminants could be > Allowable for Human or Plant Health
- Urban Ag/Community Garden Sites Based on Site History/Possibly Several Risks

Common Soil Contaminant Sources

Source:	Contaminant
Paint (before 1978):	lead
High traffic areas:	lead, zinc, PAHs
Treated lumber:	arsenic, chromium, copper
Burning wastes:	PAHs, dioxins
Manures:	copper, zinc
Coal ash:	molybdenum, sulfur
Sewage sludge:	cadmium, copper, zinc, lead, PBTs
Petroleum spills:	PAHs, benzene, toluene, xylene
Commercial / industrial	PAHs, petroleum products, solvents, lead,
site use:	other heavy metals
Pesticides:	lead, arsenic, mercury (historical use),
	chlordane and other chlorinated pesticides

Why are soil contaminants a concern in urban areas?

Contaminants Can: -Inhibit Plant Growth -Affect Human Health! -Persist in Soils Long Term -Persist without Us Knowing

Sources of Heavy Metal/Lead Exposure

• Lead paint hazards

→ lead **dust** in homes;
from exterior prep work
& friction of windows

- Bare soil in yards with lead contamination from house paint or previous use of leaded gasoline
- Take-home lead dust from construction work or other occupations

University of California [©]Garden For The Environment & S.F. Department of Public Health, Sept. 2012 Agriculture and Natural Resources A Celebration of Science and Service

How do we get lead into our body while growing food?

- Hands contaminated with leaded soil Contaminated hands touch mouth, food, drink container, cigarette
- Hands contaminated with leaded paint Hands touch damaged lead paint and its dust. Then hands touch mouth, food, drink container, cigarette, etc.
- Eating lead-containing soil or paint dust on unwashed produce, or eating produce that has lead uptake

©Garden For The Environment and S.F. Department of Public Health, Sept. 2012

How Lead Toxicity Affects Health

Agriculture and Natural Resources A Celebro Department of Public Health, Sept. 2012 Cond Service

Human Exposure →Soils/Dust Ingestion, → Skin/Eye Contact, Inhalation → Bare Feet from Garden to Home Who is impacted? -Humans/Children/Seniors -Pets ~ Based on Contaminant Concentrations

Plant/Crop-Contaminant Exposure Pathways

- Through Plants Roots → Plant Root Uptake (In Plants=Lab tests) (Plant-Internal/Now what?)
- On Plants' Parts/Leaves → Topical
- (ALL Plant/Leaf Surfaces (Plant-External/Wash)
- =Lab Tests/Not Visible to Naked Eye)
- If contamination found, how manage soils?

Use Best management practices based on case.

Best Practices: Recognize Potential Contamination → Know Risks

- Test Soils: Dont Guess! Research!
 Investigate! Do Soil Tests!!
- Buy Organic Materials Review Institute (OMRI)
- Test soils to confirm lead is < 80 ppm
- Wear Gloves & Practice Good Hygiene/Boots
- Don't Let Kids Garden/Play in > 80 ppm Soils

Best Practices:

- Raise→Import Clean Soils/Make & Use CompostBeds
- Amend \rightarrow with
- Compost/OM
- -to Bind Soil Contaminants With Phoshorous & Dilute Contaminants
- Mulch → -to Prevent Airborne Soil Dust & Prevent Upsplash
- Sub-
- Surface Irrigate

 \rightarrow

-to Prevent Upsplash/Spreading Particles

University of California Agriculture and Natural Resources A Celebration S.F. Department of Public Health, Sept. 2012

Best Practices:

- Adjust → Neutral pH → Optimal Growth/Nutrition pH
- Promote
- Good

 \rightarrow

- Drainage
- Post-Harvest→

- -Soil Contaminants Concentrate @ Slopes-Bottoms/Allow H20 Infiltration
- -Soak in Vinegar/Wash Produce & Peel Root Crops
- Manage → -Avoid Waste-Derived Fertilizers

Inputs

University of California Agriculture and Natural Resources A Celebration Application Appl

Where to start?

Understand/Interpret:

- Site History
- Soil Test
 - Remediation versus
 Best Management Practices

Observe Plant Growth/Soil Orgs/Debris
Dig test, Soil Structure Tests.

Site History→ What to Look For:

- Public Access Maps (Sanborn)
- Walk around, ask neighbors/property owners, identify other homes in neighborhood that show similar potential hazards
 - Parking lots, auto repair, junkyards, machine shops, dry cleaners, gas stations, concrete plants, illegal dumping sites!!

Every site is different, Soils vary too... Ask Yourself....:

Are there plants currently growing?

- Is the soil easy to dig into?
- Are you finding any micro organisms in the soil? (worms, insects, larvae)
- Do you come across any debris or trash?
- Consider a Bean Test: plant in testing site soil, and compare growth with potting soil.

Mapping Your Food Growing Site

• Areas that show differences in plant growth should be sampled separately

Peeling paint, evidence of contamination

- 5-6 samples per area (top 4-6 inches of soil)
 - Decomposing foliage should not be included
 - Keep accurate notations per site-area
 - Each distinct area should be sampled

Mapping your Site for Soil Tests Make Maps with Notes for Different Sample-Site Locations Ex: Front/Back/Side Yard Sample Maps

Map your Garden Based on Planting Areas (Exs: veggies, native perennials, fruit trees, etc...)

RESIDEN

Map Your Growing Site

Agriculture and Natural Resources A Celebration of Science and Service

Soil Testing

See UCCE Contra Costa/Alameda Master Gardeners Growing Your Own Food Web Page(s) for Analytical Laboratories for Soil Testing

EPA Suggests Urban Garden Soils should Be Tested for: -pH -% organic matter

-Nutrients -Heavy Metals/Petro-/Dioxins (based on site history including lead)

How Should Samples Be Collected?

- Sampling Strategy ~ Site Conditions
- Sampling Soil Surface? Top 2"
- Sampling Food Growing Site? Top 6-12"
- For Both, Make a Composite Sample.
- <u>Mix/Remove Sub-Sampled for Testing.</u>

Sample Preparation

- Map Sample Spots
- Collect/Mix Composite Sample
- Dry
- Sift
- Remove and Bag Test Sample
 Send/Deliver

Sampling Your Soil

- Use clean equipment!
- If toxins found, test subsamples by sample area AGAIN!!!
- Sample depth based on plant material
 - Veggies 1-12 inches
 - Turf 1-6 inches
 - Shrubs, roses 1-12 inches
 - Small Trees 6-18 inches
 - Deep rooted trees 6 to 24-36 inches

University of California Agriculture and Natural Resources A Celebration A Schebration of Souther and Service

Soil Sampling

- Do not sample under wet conditions/bad for soil structure
- Depending on case, may discard top inch of subsamples
- Remove non-soil materials/Rocks
- Mix subsamples, Send sample in plastic zip-type bag (6-8 cups)
- Label completely! Date, time, weather, slope, vegetation, GPS

UC Cooperative Extension

Serving the People of Alameda & Contra Costa Counties

With Support from Alameda County and Contra Costa County Agriculture Departments

