Nutrient Deficiency Symptoms and Management for Walnut

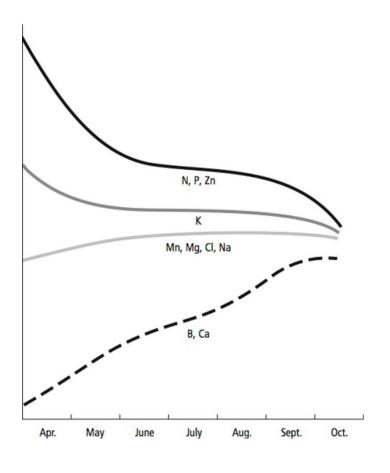
Richard P. Buchner – UCCE Tehama, Butte and Glenn counties
Joe Connell – UCCE Emeritus Butte, Glenn and Tehama counties
Katherine Pope – UCCE Sacramento, Solano and Yolo counties
Janet Caprile – UCCE Contra Costa and Alameda counties
Franz Niederholzer – UCCE Colusa, Sutter and Yuba counties
Patrick Brown and Ted De Jong, UC Davis

14 Essential Nutrients

(life cycle cannot be completed without all of them)

MACRONUTRIENTS

(N) Nitrogen


- (P) Phosphorous
- (K) Potassium
- (Ca) Calcium
- (Mg) Magnesium
- (S) Sulfur

MICRONUTRIENTS

- (Zn) Zinc
- (B) Boron
- (Fe) Iron (cold wet soils)
- (Mn) Manganese (cold wet soils)
- (Cu) Copper
- (CI) Chlorine
- (Ni) Nickel
- (Mo) Molybdemum

Plant Analysis (Leaf Samples)

Nutrient Curves throughout Season

- Integrates soil & plant factors and provides a direct measure of plant nutrition
- Annual nutrient status "survey"
 - Leaf samples collected in July
 - Plant macro-nutrient status does not change rapidly (they are stored) so an annual evaluation works.
- Diagnostic sampling
 - Collect leaf samples anytime
 - Compare symptomatic with healthy

Nitrogen Deficiency Almond

- Pale color
- Little new growth
- Reduced yield
- Weak Trees

Nutrients in Fruit - Totals

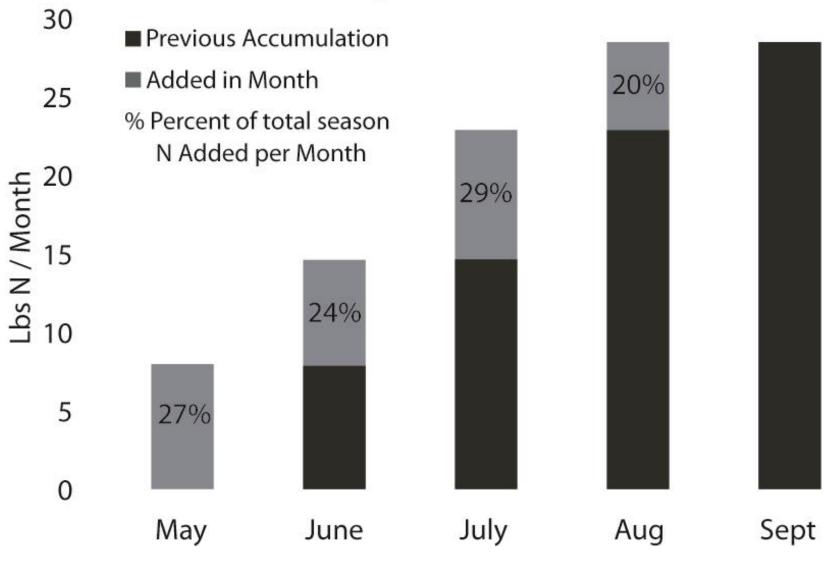
N / ton of nuts (in-shell, 8% moist) and assoc. hulls.

Site	2013*	2014*
N Chandler	26 a	26 b
D Chandler	31 a	31 a
S Chandler	25 a	25 c
N Tulare	25 a	24 c
D Tulare	32 a	31 a
S Tulare	27 a	27 c
GRAND MEAN	27	

Meat & Shell: 25-32 lbs.

Hulls: 0.5-2 lbs.

Other Scraps: 0.5-2 lbs. (?)


New Growth: 2-6 lbs.**(?)

N / ton in-shell: 28-40 lbs.

^{*}Letters show dif's w/in cv.

^{**}Based on Weinbaum's 0.13 lb N/tree, 50 trees/acre, 16 year old Hartleys.

Nitrogen Added per Month 2013 & 2015, Chandler & Tulare

Walnut Summary

- N is dynamic
- Nitrate moves with water
- N is taken up when it's needed, <u>not</u> when it's applied
 - Spoon feeding gives greatest N efficiency
 - 28-40 lbs/ton evenly over the May-Aug

K Deficiency Walnut

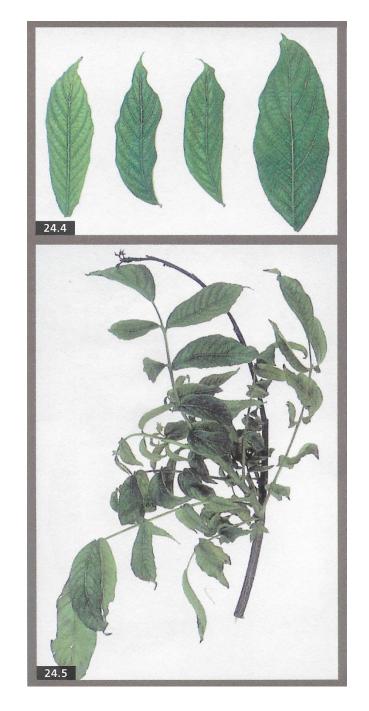
- Pale leaves mid summer
- Edges curl upward
- Underside is grayish
- Leaf margins necrotic
- Reduced leaf size
- Reduced shoot growth
- Reduced nut size

Potassium Deficiency Walnut

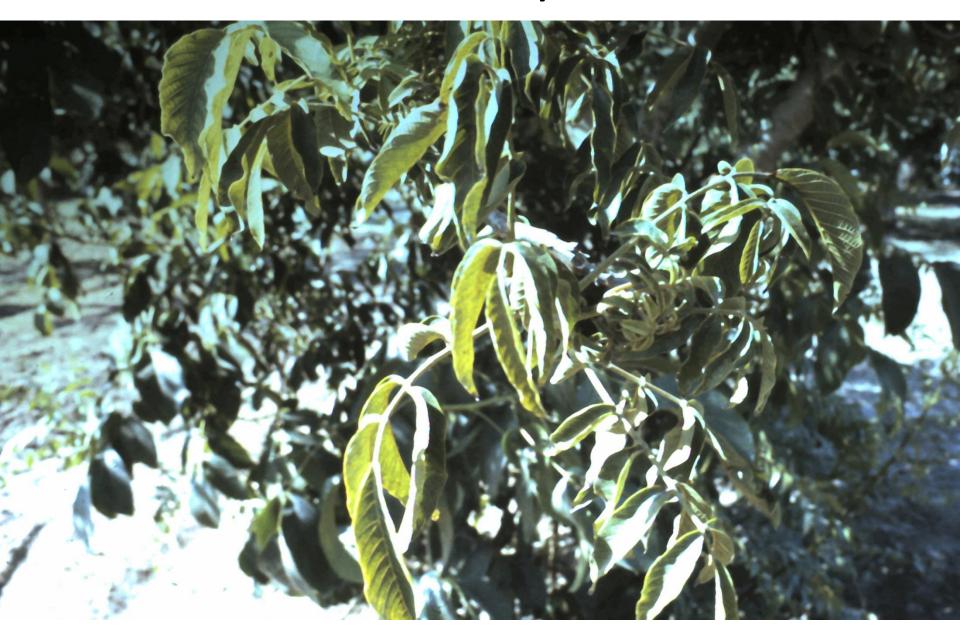
Sample Treatment for K Deficiency

Soil Type	Amount of KCL or K ₂ SO ₄	Method
Sandy	400 lbs/A	Band, drill, inject
· ~	1500 lbs/A initial	band
silt loam	+ 400 lbs/A annual	

Zinc Deficiency Walnut



- Delayed budbreak in spring
- Small, sometimes chlorotic leaves appearing in tufts on rapidly growing spring growth (little-leaf)
- Interveinal chlorosis on larger leaves
- Terminal dieback in severe cases
- Whole tree or single shoot


Photo: Bob Beede

Zinc Deficiency Walnut

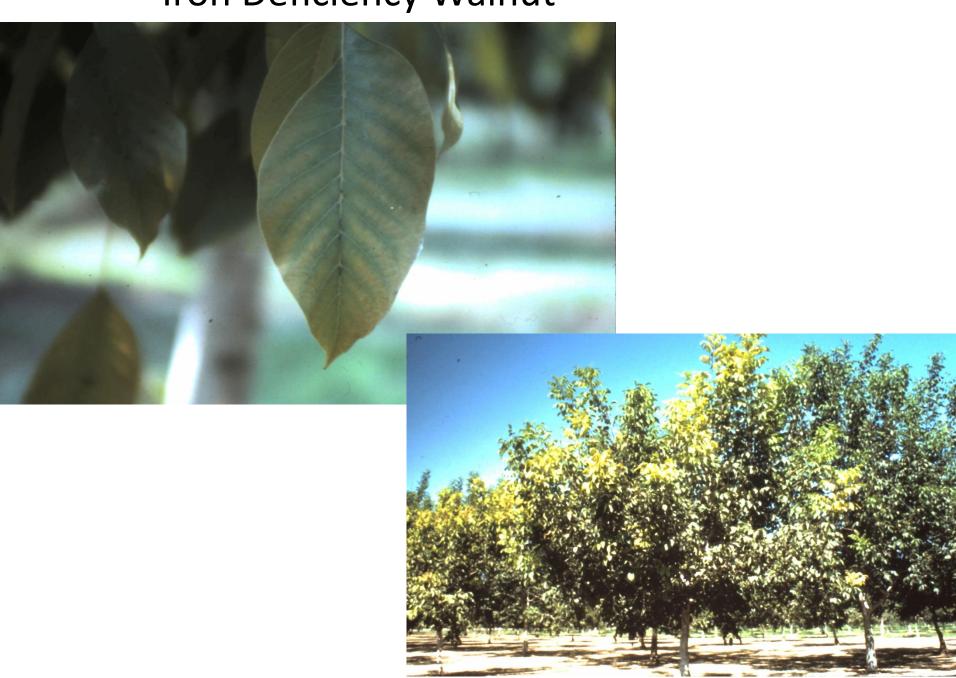
- Delayed budbreak in spring
- Small, sometimes chlorotic leaves appearing in tufts on rapidly growing spring growth (little-leaf)
- Interveinal chlorosis on larger leaves
- Terminal dieback in severe cases
- Whole tree or single shoot

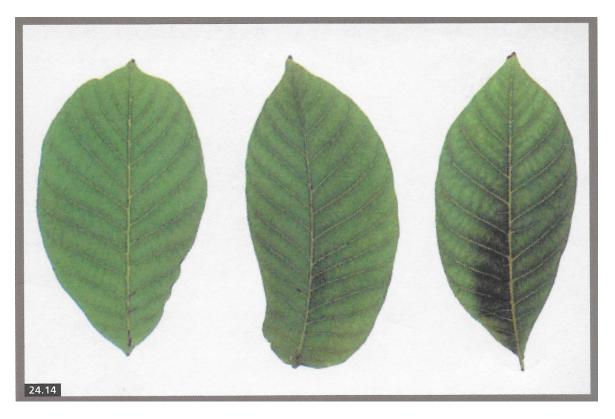
Zinc Deficiency Walnut

Sample Foliar Treatment for Zn Deficiency

- Foliar applications may be cheaper and more effective especially on fine textured soils
- Mature leaves do not absorb Zn well

Material/A	1-2 lbs ZnSO4 (36% zinc) in 100 GPA + surfactant + pH adjusted to 5.0 OR 1-2 lbs Zn-EDTA (15%) in 100 GPA + surfactant
Timing	Post bloom at 6-10 inches of shoot growth (leaves have just turned from pink to green) Reapply in 2-3 weeks if symptoms persist


Iron Deficiency Walnut



- Essential for Chlorophyll synthesis,
 Nitrogen metabolism,
 photosynthesis and enzyme
 production
- Early season chlorosis
- Entire leaf turns uniformly yellow
- Almost white if severe

Iron Deficiency Walnut

Manganese Deficiency Walnut

- Plays a central role in photosynthesis
- Symptoms early to mid summer
- Chlorosis
 between the
 main and lateral
 veins
- Herring bone effect

Magnesium Deficiency Walnut

- Integral part of the chlorophyll molecule
- Necessary for photosynthesis
- Symptoms appear mid to late summer
- Basal leaves chlorotic forming an inverted "V" of green along the basal part of the mid rib.

