

Plant Nutrient Management Pitahaya Fertility Managment & Soil Analytical Reports

www.agq.com.es

for a better and safer world

Kenny Alberto Lam

environment

agronom

(LIT)

for a better and safer world

40

AGRONOMY

ICP-4616

Ak) a

Technological service platform

AGQ Labs is a chemical technological center, with 20 years of experience, based on analysis laboratories, advanced assays and specialized chemical engineering. AGQ Labs provides solutions and services for agro-food, environmental, industrial and mining sectors. It is a synchronized process between technology and knowledge, between analytical chemistry and applied chemistry.

Control Laboratory

Technological Center

Consulting / Specialized Engineering Inspection and Control

Food Safety

Agronomy

Environmental control

Mining

Health & Safety

SOIL ANALYSIS

Comprehensive Soil Analysis

- Physical and chemical Parameters: Granulometric Fractions and Texture (clay, silt, fine sand, medium sand, coarse sand, etc.), pH (H20 and KCI), Electrical Conductivity, Active Lime and Total Carbonates, Oxidizable Organic Matter, C/N Ratio, Humidity...
- Fertility: Nitrogen Forms (Total Nitrogen, Kjeldahl Nitrogen, Nitric Nitrogen, Ammonia Nitrogen and Organic Nitrogen), Phosphorus, Available Base Cations (Calcium, Magnesium, Potassium, Sodium)...
- Soil structure: Exchangeable Bases (Calcium, Magnesium, Potassium, Sodium), Cation exchange capacity
- Assimilable Fractions: Calcium, Magnesium, Potassium, Chloride, Sodium, Sulphur, Aluminium,...

- Saturated Paste Extract (SPE): Ammonia, Potassium, Phosphates, Potasium, Calcium, Magnesium, Sodium, Chloride,
- Microelements: Iron, Manganese, Copper, Zinc, Boron,...
- Heavy Metals: Lead, Cadmium, Mercury, Arsenic, Chromium, Nickel, Lithium, Beryllium, Cobalt, Titanium, Tin, Strontium, Barium, Silver,...
- Irrigation Parameters: Useful water, field capacity, wilting point, permeability...
- Compaction Risk.

ANALYSIS OF NUTRIENT AND DRAINAGE SOLUTIONS

Physical and Chemical Analysis

- pH, Electrical Conductivity, Nitrates, Chloride, Alkalinity/ Bicarbonates, Sulphates, Calcium, Magnesium, Sodium, Potassium, Iron, Manganese, Copper, Zinc, Boron, Aluminium, sodium adsorption ratio (SAR), Suspended Solids, Turbidity,...
- Heavy metals: Lead, Cadmium, Mercury, Arsenic, Chromium, Nickel, Lithium, Beryllium, Cobalt, Titanium, Tin, Strontium, Barium, Silver,...
- Microbiology: Salmonella, Coliforms, Escherichia, Total bacteria, Clostridium, Pseudomonas, Legionella,...
- Other Parameters: Neutralization curve of an acid.

Specific Analysis for Integrated Production and GLOBAL GAP

Analysis of Nutrient and Drainage Solutions

ph, Electrical Conductivity, Calcium, Magnesium, Sodium, Potassium, Phosphates, Sulfates, Nitrates, Ammonia, Chloride, Iron, Manganese, Copper, Zinc, Boron.

PLANT TISSUE ANALYSIS

Macronutrients

Nitrogen, phosphorus, potassium, calcium, magnesium, and sulphur.

Micronutrients boron, iron, manganese, copper and, zinc.

Toxic elements

Sodium, chloride and aluminum.

Heavy metals

Lead, cadmium, mercury, arsenic, chromium, nickel...

Specific Analysis for Integrated Production

Olive grove, potato field, cotton plantation, strawberry plantation, citrus grove, etc.

SPECIFIC ANALYSES

SPECIFIC PETIOLE/SAP ANALYSIS

pH, Electrical Conductivity, Organic Nitrogen, Ammonia, Nitrates, Phosphates, Potassium, Calcium, Iron, Manganese, Copper, Zinc, Boron, Chloride, Sodium, etc.

SPECIFIC FRUIT ANALYSES

Mineral Analysis: Nitrogen, Phosphorus, Potassium, Magnesium, Potassium, Sulphur, Boron, Iron, Manganese, Copper, Zinc.

Physical and chemical analyses: Moisture, Dry matter, pH, Degrees Brix (°Bx), Acidity, Total sugars, etc.

Bound Calcium and Calcium Fractions: Bound Calcium, Insoluble Calcium, Soluble Calcium, Total Calcium.

ANALYSIS OF ROOT RESERVES

Starch, Arginine, Protein, Dry matter, Nitrogen, Phosphorus, Potassium, et

ROOT HEALTH Analysis of phosphites, fungicides, insecticides, etc.

FERTILIZERS EFFICIENCY AND LEACHING

for a **be**tter and **safer** world

www.agq.com.es

Traditional Analyses

Soil

Tissue

Water

Soil Sampling Methods

Sampling Point and Depth

- Pulled from beneath irrigation emitters where wet bulb is formed
- Depth varies depending on plant species; typically 16" or less

Soil Reporting Results

PHYSICAL PROPERTIES - GRANULOMETRY

Texture	Sandy Loam
Clay	15.0
Silt	23.0
Sand	62.0

MICRONUTRIENTS

Parameter	Result	Units	Very low Lo	w Normal Hi	<mark>gh</mark> Very high	Method
Boron	< 0.50	mg/kg	0.60	1.00		Aqueous Ext.
Iron	10.4	mg/kg	4.00	10.0		DTPA
Manganese	3.28	mg/kg	1.00	5.00		DTPA
Copper	0.89	mg/kg	0.40	1.00		DTPA
Zinc	3.14	mg/kg	1.00	2.00		DTPA

CATION RATIOS:

% Available Bases

Granulometry & Texture

Electrical Conductivity (E.C.)

EC (dS/m at 25°C) 1:5 (w/w) extract	EC (dS/m at 25°C) Saturated Paste	Classification	
< 0.35	< 2	Not Saline	
0.35 - 0.65	2 - 4	Slightly Saline	
0.65 - 1.15	4 - 8	Saline	
1.15 - 2.00	8 - 16	Highly Saline	
> 2.00	> 16	Extremely Saline	

- Osmotic stress potential
- Phytotoxicity
- Structure degradation

How soil pH affects availability of plant nutrients

Organic Matter

Organic Matter (%)		
< 1%	Very Low	
1% - 1.9%	Low	
2.0% - 2.5% Normal		
> 2.5%	High	

- Soil Structure
- Water retention
- Aeration
- Microorganism Habitat

Exchange Complex

Cationes	Relative % Cations of Exchange Complex			plex	
Cationes	Very Low	Low	Normal	High	Very High
Calcium	< 50	50 - 60	60 - 70	70 - 80	> 80
Magnesium	< 10	10 - 20	20 - 30	30 - 40	> 40
Potassium	< 2.5	2.5 - 5	5 - 10	10 - 20	> 20
Sodium	-	< 0.5	0.5 - 5	5 - 15	> 15

	Cation Antagonisms		
	Normal	Deficient Mg	Deficient K
K/Mg	0.2 - 0.3	> 0.5	< 0.2
Ca/Mg	_	> 10	-

Cation Ratios	Optimal
Ca/Mg	4.0 - 6.0
Mg/K	2.0 - 3.0
Ca + Mg/ K	10.0 - 20.0
Ca/K	10.0 - 15.0

Other Macronutrients

- Phosphorus
 - 20-40 mg/Kg optimal range with Olsen
 - P availability influenced by other factors, and results of traditional testing may be deceiving.
- Nitrogen

Total Nitrogen (mg/kg) Dumas Method (combustión)			
	Low	Normal	High
Sandy Soil	< 500	500 - 1000	> 1000
Loam Soil	< 1000	1000 - 1500	> 1500

Nitrate Nitrog	en (NO3-N) v	vith KCL Extract	ion (mg/Kg)

Low	Medium	High	Excessive
<10	10-20	20-30	> 30

Micronutrients

Microputrient	mg/Kg			
whereit	Low	Medium	High	
Manganese	4.00	4.0 - 10.0	10.00	
Boron	0.50	0.5 - 6.0	6.00	
Copper	1.00	1.0 - 5.0	5.00	
Iron	5.00	5.0 - 15.0	15.00	
Zinc	0.05	0.05 - 5.00	5.00	

- DTPA developed for Midwestern soils
- Soil concentrations in CA always high
- Not always reliable in plant availability
- Foliar testing preferred for micronutrient assessment

Soil Reporting Results

PHYSICAL PROPERTIES - GRANULOMETRY

Texture	Sandy Loam
Clay	15.0
Silt	23.0
Sand	62.0

MICRONUTRIENTS

Parameter	Result	Units	Very low Lo	w Normal Hi	<mark>gh</mark> Very high	Method
Boron	< 0.50	mg/kg	0.60	1.00		Aqueous Ext.
Iron	10.4	mg/kg	4.00	10.0		DTPA
Manganese	3.28	mg/kg	1.00	5.00		DTPA
Copper	0.89	mg/kg	0.40	1.00		DTPA
Zinc	3.14	mg/kg	1.00	2.00		DTPA

CATION RATIOS:

% Available Bases

Water Reporting Results

Normal

Low

525

6.50

750

High

1,050

7.50

1,500

Very high

Technique

Calculated

Potentiometry

Potentiometry

CHEMICAL PROPERTIES

Parameter	Result
Total Dissolved Solids (TC	499
рН	7.07
Electrical Conductivity (E.	628

C	۸ті	0	NIC
C,	нн	U	142

CATIONS							
Parameter	mg/L	meq/L	Very low	Low	Normal Hi	<mark>gh</mark> Very high	Technique
Calcium	60.6	3.03		2.00	6.00		ICP-OES
Magnesium	26.0	2.14		0.50	2.50		ICP-OES
Potassium	4.14	0.11		0.00	0.25		ICP-OES
Sodium	46.4	2.02		0.00	4.00		ICP-OES

Units

mg/L

μS/cm

Very low

ANIONS

Parameter	mg/L	meq/L	Very low	Low	Normal High	Very high	Technique
Alkalinity	269	4.42		0.50	3.00		Seg. Flow Analyzer
Chlorides	13.5	0.38		0.00	4.00		Seg. Flow Analyzer
Nitrates	26.0	0.42		0.00	0.80		Seg. Flow Analyzer
Sulphates	53.3	1.11		0.00	6.00		ICP-OES
MICRONUTRIENTS							
Parameter	Result	Units	Very low	Low	Normal High	Very high	Technique
Boron	< 0.05	mg/L		0.00	0.80		ICP-OES

pH & Alkalinity

- As with soil, irrigation pH has a great influence on nutrient availability, and has a direct relationship with soil solution pH.
- Buffering capacity of a soil is determined by HCO3 concentrations.

BICARBONATES (HCO₃) HAZARD LEVELS								
Application	Units	None	Increasing	Significant	High	Severe		
Field crops	me/l HCO ₃	<1.0	1.0-2	2.0-3.0	3.0-4.0	>4.0		
	ppm HCO ₃	<61	61-122	122-183	183-244	>244		
Greenhouse	me/l HCO ₃	<1.0	1.0-1.5	1.5-2.0	2.0-3.0	>3.0		
and Nurseries*	ppm HCO ₃	<61	61-92	92-122	122-183	>183		
Greenhouse	me/l HCO ₃	<1.0	1.0-1.25	1.25-1.5	1.5-2.0	>2.0		
"Plugs"	ppm HCO ₃	<61	61-76	76-92	92-122	>122		

				ECw (m	mhos/cm)	
				Yield p	otential ¹		,
Vegeta	100%	90 %	75%	50 %			
University of Cali	fornia	SALIN	ITY HAZARD) LEVEI	LS*		
Application	Units	None	Increasing	Signi	ficant	High	Severe
All seedlings	mmho/cm	<0.2	0.2-0.7	0.8	3-1.0	1.1-1.5	>1.5
Container plants	mmho/cm	<0.5	0.5-0.7	0.8	3-1.0	1.1-2.0	>2.0
Nurseries**	mmho/cm	<0.2	0.2-0.7	0.8-	-1.25	1.26-3.0	>3.0
Field crops	mmho/cm	< 0.75	0.75-1.0	1.1	-2.0	2.1-3.0	>3.0
Hydroponics Field crops	mmho/cm	< 0.75	0.75-1.0	1.1	-2.0	2.1-3.0	>3.0
Soil Permeability***	mmho/cm	>0.5					<0.4
LF 1(Radish	• • •		0.8	1.3	2.1	3.4	
Spinach			1.3	2.2	3.5	5.7	
LF 1 [±] Squash,	scallop		2.1	2.6	3.2	4.2	
LE 2 Squash,	zucchini		3.1	3.8	4.9	6.7	
LF J Strawbe	rry		0.7	0.9	1.2	1.7	

Sodium Adsorption Ratio (SAR)

SAR HAZARD LEVELS							
Application	None	Increasing	Significant	High	Severe		
Most Production Systems	<1	1-2	2-4	4-5	>5		
Hydroponics	<3	3-7	7-8	8-9	>9		

Phytotoxic Ions (B & CI)

Boron

mg/L	Classification				
<0.2	Very low B content; excellent quality				
0.0.3-0	.4 Low B content; good quality				
0.5-0.	7 Moderate salinity; only sensitive crops affected				
0.8-1.0	D High B content; production at risk				
1.1-2.0	O Very high B; only tolerant plants can be cultivated.				
>2.1	Excessive B; use not advisable.				
Chlo	ride				
meq/L	Classification				
<3	No risk; ideal conditions				
3-5	Low Cl; generally low risk. Caution with foliar contact in sensitive crops.				
6-10	Moderate-high Cl; caution with sensitive plants.				
11-15	Very high Cl; production at risk but manageable with proper leaching.				
>15	Excessive CI; use not advisable in agriculture.				

Water Reporting Results

Normal

Low

525

6.50

750

High

1,050

7.50

1,500

Very high

Technique

Calculated

Potentiometry

Potentiometry

CHEMICAL PROPERTIES

Parameter	Result
Total Dissolved Solids (TC	499
рН	7.07
Electrical Conductivity (E.	628

C	۸ті	0	NIC
C,	АП	U	142

CATIONS							
Parameter	mg/L	meq/L	Very low	Low	Normal Hi	<mark>gh</mark> Very high	Technique
Calcium	60.6	3.03		2.00	6.00		ICP-OES
Magnesium	26.0	2.14		0.50	2.50		ICP-OES
Potassium	4.14	0.11		0.00	0.25		ICP-OES
Sodium	46.4	2.02		0.00	4.00		ICP-OES

Units

mg/L

μS/cm

Very low

ANIONS

Parameter	mg/L	meq/L	Very low	Low	Normal High	Very high	Technique
Alkalinity	269	4.42		0.50	3.00		Seg. Flow Analyzer
Chlorides	13.5	0.38		0.00	4.00		Seg. Flow Analyzer
Nitrates	26.0	0.42		0.00	0.80		Seg. Flow Analyzer
Sulphates	53.3	1.11		0.00	6.00		ICP-OES
MICRONUTRIENTS							
Parameter	Result	Units	Very low	Low	Normal High	Very high	Technique
Boron	< 0.05	mg/L		0.00	0.80		ICP-OES

Plant Tissue Analysis

- Help determine plant nutrient status
- Typically takes over 7-10 days to see response from fertilizer application
- Even prior to appearance of visual deficiency symptoms, plant metabolisms are damaged, which limits productivity
- Tool to confirm that nutrient management plan is correct
- Consequence of various factors that affect nutrient uptake
- Reference values not updated

Reporting Results

MACRONUTRIENTS

Parameter	Result		
Nitrogen	2.93		
Phosphorus	0.14		
Potassium	1.33		
Calcium	3.43		
Magnesium	0.26		
Sulfur	0.30		

Units	Very low	Low	Normal	High	Very high	Technique
%		2.50		3.10		Elemental Analyser
%		0.15		0.20		ICP-OES
%		0.90		1.80		ICP-OES
%		3.10		5.00		ICP-OES
%		0.30		0.50		ICP-OES
%		0.20		0.30		ICP-OES

MICRONUTRIENTS

Parameter	Result
Boron	64.7
Iron	173
Manganese	49.3
Copper	7.73
Zinc	51.2
Molybdenum	< 10.0

Units	Very low	Low	Normal High	Very high	Technique
ng/kg		25.0	100		ICP-OES
ng/kg		60.0	150		ICP-OES
ng/kg		25.0	200		ICP-OES
ng/kg		6.00	100		ICP-OES
ng/kg		25.0	200		ICP-OES
ng/kg					ICP-OES

OTHERS

Parameter	Result	Units	Very low Lo	w Normal Hi	<mark>gh Very high</mark>	Technique
Chlorides	457	mg/kg	844	1,125		CFA
Sodium	590	mg/kg	281	375		ICP-OES

Essential Mineral Nutrients

- Macro Elements: required in large amounts (80 – hundreds Lbs/acre)
- Secondary Elements: required in large amounts (20-80 Lbs/acre)
- Micro Elements: required in small quantities (a few or less Lbs/acre)
- Others in study/discussion: Nickel, Chlorine, Cobalt, Vanadium

- Mn Manganese
- Mo Molybdenum

Comparación formas de abonado al cultivos

Ciclo de Cultivo

Adaptado de Cadahía, 2005

for a **be**tter and **safer** world

www.agq.com.es

Nutrient mobility

Nutrient	Туре	Uptake form	Mobility in Plant	Mobility in Soil
Nitrogen	Macro	NO ₃ ⁻ , NH ₄ ⁺	Mobile	Mobile as NO_3^- , immobile as NH_4^+
Phosphorus	Macro	HPO ₄ ²⁻ , H ₂ PO ₄ ⁻	Somewhat mobile	Immobile
Potassium	Macro	K+	Very mobile	Somewhat mobile
Calcium	Macro	Ca ²⁺	Immobile	Somewhat mobile
Magnesium	Macro	Mg ²⁺	Somewhat mobile	Immobile
Sulfur	Macro	SO ₄ -	Mobile	Mobile
Boron	Micro	H ₃ BO ₃ , BO ₃ ⁻	Immobile	Very mobile
Copper	Micro	Cu ²⁺	Immobile	Immobile
Iron	Micro	Fe ²⁺ , Fe ³⁺	Immobile	Immobile
Manganese	Micro	Mn ²⁺	Immobile	Mobile
Zinc	Micro	Zn ²⁺	Immobile	Immobile
Molybdenum	Micro	MoO ₄ -	Mobile	Somewhat mobile

Visual Nutritional Diagnosis

• Nutrient mobility drives deficiency symptom location in plant

How does nutrient concentration affect plants?

Concentration of nutrient of plant tissue

Sample Timing

Punctual vs. Dynamic

Soil Solution Sampling

Concentration of Soil Solution;

Generally the ions are absorbed against concentration gradient and rate of absorption depends on that concentration

• Plant phenological stage; nutrient demand seasonal changes

Ion-Ion interactions (balance);

- Antagonism/Synergism: Interference with other ion uptake
- Facilitation: Enhancement of other ion uptake
- Message to force plant into phenological stage

for a **be**tter and **safer** world

www.agq.com.es

www.agq.com.es

Nutrient removal (lbs/acre) by aerial growth biomass

Based on UCCE estimations for Physical graffity

-UCCE Irvine field plot 726 plants/acre -Pruning 200 lbs/plant-year; 145,200 lbs/acre

-Fillmore field plot 1452 plants/acre -Pruning 200 lbs/plant; 290,400 lbs/acre

N	P2O5	К2О
138	46	461

N	P2O5	K2O
276	92	922

Incorporate prunnings;

plant health issue??

for a **be**tter and **safer** world

www.agq.com.es

Nutrient removal (lbs/acre) by fruit

Based on UCCE estimations for Physical graffity

-UCCE Irvine field plot 726 plants/acre -Conservative 20 lbs/plant; 14,520 lbs/acre -Potential 50 lbs/plant; 36,300 lbs/acre

-Fillmore field plot 1452 plants/acre -Conservative 20 lbs/plant; 29,040 lbs/acre -Potential 50 lbs/plant; 72,600 lbs/acre

N	P2O5	К2О
29	8	57
73	20	142

N	P2O5	К2О
58	16	113
145.2	40	284

Thank you klam@agq.us.com