What we know about red blotch and leafroll disease incidence in the foothills.

L.R. Wunderlich

Foothill Grape Day May 18, 2016

2011 UCCE Foothill Grape Research Project Summary

Recurrent theme: What's causing the "Red Leaf" phenomenon? Increasing our knowledge over time

Nutritional deficiencies: can we mitigate symptoms and show petiole uptake with fertilizing?

 Understanding foothill soils and potential for nutrient management recommendations based on soil type

Leafroll virus: which species are present here?

- Mealybugs and other potential leafroll vectors Phylloxera?
- Gill's mealybug biology and management

Grapevine Leafroll Associated Virus (GLRaV)

Environment

Transmitted also mechanically (grafting)

Known vectors in foothills

Grape mealybug

Gill's mealybug

Others?

Vine mealybug-Amador western edge only (so far).

Host

Grapevine Leafroll Associated Virus (GLRaV)

Caused by a complex of viruses

GLRaV-1 GLRaV-3 GLRaV-4LV ('like virus')

^{02.} GLRaV-2: no known vector

GLRaV-7: odd, not believed to be important, no known vector

All leafroll viruses are graft transmitted, can come in on planting material.

PLOS ONE | DOI:10.1371/journal.pone.0142120 November 3, 2015

RESEARCH ARTICLE

Relative Prevalence of Grapevine Leafroll-Associated Virus Species in Wine Grape-Growing Regions of California

Abhineet M. Sharma¹, Breanna Baraff¹, John T. Hutchins¹, Michelle K. Wong¹, G. Kai Blaisdell¹, Monica L. Cooper², Kent M. Daane¹, Rodrigo P. P. Almeida¹*

1 Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America, 2 University of California Cooperative Extension, 1710 Soscol Avenue, Suite 4, Napa, CA, 94559, United States of America

* rodrigoalmeida@berkeley.edu

CrossMarl

Fig 1. Relative prevalence of grapevine leafroll-associated viruses in tested vineyards.

8/11 AMEL sites tested positive for at least one GLRaV

234 samples taken:47% positive for atleast one GLRaV

GLRaV-2 was most prevalent(every positive site had it)

30% of AmEL samples had mixed infections (more than one leafroll virus detected)

Sharma AM, Baraff B, Hutchins JT, Wong MK, Blaisdell GK, et al. (2015) Relative Prevalence of Grapevine Leafroll-Associated Virus Species in Wine Grape-Growing Regions of California. PLoS ONE 10(11): e0142120. doi:10.1371/journal.pone.0142120 http://journals.plos.org/plosone/article?id=info:doi/10.1371/journal.pone.0142120

Fig 2. Relative prevalence of grapevine leafroll-associated virus species by region.

Sharma AM, Baraff B, Hutchins JT, Wong MK, Blaisdell GK, et al. (2015) Relative Prevalence of Grapevine Leafroll-Associated Virus Species in Wine Grape-Growing Regions of California. PLoS ONE 10(11): e0142120. doi:10.1371/journal.pone.0142120 http://journals.plos.org/plosone/article?id=info:doi/10.1371/journal.pone.0142120

Positive for GLRaV-1, 2, 3 and -5 (4LV)

Journal of Economic Entomology

OXFORD

UNIVERSITY PRESS

Ferrisia gilli Gullan (Hemiptera: Pseudococcidae) transmits grapevine leafroll-associated viruses

Journal:	Journal of Economic Entomology	
Manuscript ID	ECONENT-2016-0149.R1	
Manuscript Type:	Research Article	
Date Submitted by the Author:	n/a	
Complete List of Authors:	Wistrom, Christina; UC berkeley, College of Natural Resources Blaisdell, G.; UC Berkeley, ESPM Wunderlich, Lynn; University of California Cooperative Extnsn, UC Cooperative Extension Almeida, Rodrigo; UC Berkeley, ESPM Daane, Kent; Kearney Agric Center, Unknown	
Please choose a section from the list :	section t: Arthropods in Relation to Plant Disease	
Field Keywords:	Vector-Borne Pathogens, Crop Protection, Berry Crop Insect, Pest Management, Vector Competence	
Organism Keywords: Pseudococcidae		

Gill's mealybug transmits GLRaV-3 as efficiently as vine mealybug.

It also can transmit GLRaV-1.

More work needed.

Barbera positive for GLRaV-5 variant

Negative for leafroll in 2010 Barbera

Negative Primitivo

Positive for Red Blotch in 2013

Others?

Agriculture and Natural Resources

University of California

Vermentino on 3309 planted 2005; Brix 22 at harvest (winemaker pleased)

Red blotch testing 2013-2015. Not random-only vines with red blotch or red leaf symptoms.

Mysore "Sudhi" Sudarshana, USDA virologist

2013: 10 blocks tested, 29 samples 24/29 positive.

2014: 14 blocks tested, 25 samples 13/25 positive.

2015: 20 blocks tested, 39 samples 28/39 positive.

Total tested: 65positive/94 samples (M.S. Sudarshana, unpublished data.)

2015 Red Blotch Juice Samples Dry farmed Zinfandel + Vines positive for GRBaV, negative for GLRaV-1 and -3. L.R. Wunderlich and M.S. Sudarshana (unpublished data).

	Ave. Brix (SE) N=10	Ave.pH N=10	Ave. Berry weight (g). (SE) N=30
Neg	29.5 (0.5)	3.37	44.4 (1.1)
Pos	21.75 (0.6)	3.28	56.0 (2.1)