

Does the form of N make a difference ?

Average of 1985-86 Miyao / grower sidedress trials :

	Early season	Fruit yield	Brix yield
N fertilizer	petiole NO ₃ -N (PPM)	(tons/acre	(tons/acre)
Ammonium sulfate	11,700	44.2	2.12
UN-32	11,900	43.5	2.08
CAN-17	11,700	44.6	2.11

spine to have a state build and the design of the

Eight weekly fertigations, seasonal total of 170 lb N/acre - ammonium sulfate (21-0-0) - calcium nitrate (15.5-0-0-19 Ca)

the state of the second st

Summer in the

	Fruit yield	Soluble solids
N form	(tons/acre)	^{(o} brix)
ammonium sulfate	46	5.5
calcium nitrate	47	5.4

	Fruit yield	Soluble solids	Fruit calcium
N form	(tons/acre)	^{(o} brix)	(% of dry wt)
ammonium sulfate	46	5.5	0.09
calcium nitrate	47	5.4	0.09

210 lb Ca / acre was applied - why no difference in fruit Ca ?

Processing tomato fruit quality survey :

Ca moves in transpirational flow in xylem, so leaf Ca is high
 surface wax on fruit limits transpiration, limiting Ca in xylem flow; Ca does not move in phloem

Does the form of K make a difference ?

K chloride
K sulfate
K thiosulfate

To what degree is chloride toxic? Tomato is reasonably salinity tolerant, and chloride tolerant - no detrimental effects < 175 PPM CI in soil solution - 200 lb K₂O/acre from KCI contains ≈ 35 PPM CI averaged over a season's irrigation

Does the form of K make a difference ?

K chloride
K sulfate
K thiosulfate

To what degree is chloride toxic? Tomato is reasonably salinity tolerant, and chloride tolerant - no detrimental effects < 5 meq/liter (175 PPM CI) - 200 lb K₂O/acre from KCI contains < 35 PPM CI averaged over a season's irrigation

Are there beneficial effects of sulfate or thiosulfate ions? - sulfur availability is limited only in very low organic matter soil, and low salt irrigation water - thiosulfate ion acidifies soil

Is foliar K application useful ?

Mean of 5 trials :

The first of the second	Fruit yield	Mark Street		
K treatment	(tons/acre)	° brix		
Foliar spray	45	4.7		
Untreated control	46	4.7		

5-6 weekly sprays @ 7-10 lb K/acre from K₂SO₄

Does humic acid improve fertilizer performance ?

What has been proven :

In hydroponic culture humic / fulvic acids can

- increase plant growth
- increase nutrient uptake

What has been proven : In hydroponic culture humic / fulvic acids can - increase plant growth - increase nutrient uptake

Are commercial humic products effective in field soils ? Replicated field data from western states is very limited - slight benefit in potatoes (University of Idaho) - no benefit in onions (Oregon State University)

2007-09 UCD trials :

Products tested :
Actagro Humic acid
Actagro Liquid humus
Organo Liquid Hume
Quantum-H
ESP-50

Does humic acid stimulate microbial activity in field soils ?

Two field soils wetted with a solution of humic acid and 10-34-0

 all products at 2 lb active ingredient/acre
 Incubated in sealed jars for 7 days
 CO₂ released by microbial respiration measured

Does humic acid stimulate microbial activity in field soils ?

Some and the sources	mg of carbon mineralized			
	Soil with 0.8% organic matter	Soil with 2.5% organic matter		
P + Humics	5.9	11.0		
P fertilizer alone	5.5	11.2		
Humic effects				
significant ?	yes	no		

Does humic acid affect the microbial community in field soils ?

	Phospholipid fatty acids increased ?			
	Soil with 0.8% organic matter	Soil with 2.5% organic matter		
fungi	yes	no		
bacteria	yes	no		
actinomycetes	yes	no		

2008-09 Humic acid field trials

Pretransplant banding of 10-34-0 with / without humic acids
 Humic rates of 1 and 3 lb active ingredient / acre
 Five 100' reps per treatment

HOLDE

Early season sampling : ✓ Whole plant sacrifice to evaluate growth ✓ Leaf samples to evaluate nutrient uptake

2008:

		% in plant			
	Plant dry wt (g)	N	Ρ	K	
P + Humics @ I lb/acre	88	4.6	0.42	3.4	
P + Humics @ 3 lb/acre	87	4.7	0.42	3.5	
P fertilizer alone	87	4.6	0.39	3.4	
Humic effects significant ?	no	no	no	no	

Sampling at 6 weeks after transplanting

2009:

		% in leaf			
	Plant dry wt (g)	N	Ρ	K	
P + Humics @ I lb/acre	21	5.6	0.63	2.4	101
P + Humics @ 3 lb/acre	22	5.6	0.64	2.4	N. C. L. L. L. L.
P fertilizer alone	22	5.7	0.68	2.4	
Humic effects significant ?	no	no	no	no	

Sampling 4 weeks after transplanting

At harvest :

	2008		2009		
	Mkt yield (tons/acre)	Solids (° brix)	Mkt yield (tons/acre)	Solids (° brix)	
P + Humics @ I lb/acre	50.9	5.5	42.2	5.5	
P + Humics @ 3 lb/acre	51.8	5.5	45.6	5.5	
P fertilizer alone	52.7	5.6	44.2	5.6	
Humic effects significant?	no	no	no	no	

Bottom line : despite the potential to be bioactive, low rate humic acid application provided no agronomic benefit in normal field soil

