Irrigation Management in Strawberry

Michael Cahn Irrigation and Water Resources Advisor University of California, Cooperative Extension, Monterey County

> **University** of **California** Agriculture and Natural Resources

Challenges with drip in strawberries

- Uniform pressure in irrigation blocks
- Application uniformity on slopes
- Fertigation uniformity

University of **California** Agriculture and Natural Resources

Why Achieve Uniformity?

University of **California** Agriculture and Natural Resources

Distribution uniformity of strawberry drip systems (2011-2013)

Achieving high application uniformity with drip

- Properly designed and installed system
- Regular maintenance (fix leaks, flush ends of lines)
- Good operation practices

Uniform pressure is the key to drip

Recommended practice:

1. Check and record pressure during every irrigation

Where?

- Pump/water source
- Upstream and downstream of:
 Filters
 Values
 - Valves
 - **Pressure regulators**
- Beginning and end of submain
- Beginning and end of drip lines

2. Use Schrader valves in irrigation blocks

- Use the same gauge for checking pressure at all locations
- Range of gauge should be 0 – 30 psi.
- Periodically check calibration of gauge
- Protect gauge from damage: store properly

3. Use pressure reducing valves to automate pressure regulation

- ✓ Install at main-submain connections
- ✓ Size for flow rate and pressure range
- Need sufficient upsteam pressure (5 psi > downstream psi)
- Add Schrader valves to monitor upstream and downstream pressures
- ✓ Maintenance and training needed

Preset pressure reducing valves

- ✓ Simple to use
- ✓ Low maintenance
- ✓ React quickly to pressure fluctuations
- ✓ Downstream pressure is preset
- ✓ Must be sized for flow rate (up to 100 gpm)

Managing Drip on Slopes

Effect of slope along the bed on uniformity

300 ft beds; high flow tape

2.3 ft = 1psi

Ground Slope (%)

Options for managing slope along the submain

- Run submain (oval hose) downhill and undersize to dissipate pressure (difficult to design)
- Use spaghetti leads of varying lengths and diameters to dissipate pressure (complex design, susceptible to plugging)
- Add manifolds to group beds of similar elevation (preferred)
- Use pressure reducing valves (PRVs) to regulate pressure (better yet)
- Install low pressure drain or gate valve at lowest point to drain submain after irrigating
- Open valves on submain sequentially from top to bottom of slope, and close sequentially from the bottom to top of slope.

Designing a submain along a slope

-4% slope

Managing slope along the submain: Use small pressure regulators

Designing a submain along a slope

-4% slope

Managing slope along the length of the bed

- Install beds parallel to contours (along the hillside)
- No more than +1% elevation gain or -3% drop along the bed length
- Maintain pressure near maximum for tape (10 psi for most 4 mil tapes)
- Use thicker walled tape (6-8 mil)-allows pressures up to 12 to 14 psi
- Use pressure compensating tape

Uniform fertigation applications

Prerequisites:

- High distribution uniformity
- Backflow prevention

Distribution Uniformity of Water and Fertilizer

	Lettuce		Irrigation	Fertilizer	Pressure
Field #	Type	Bed width	DU^{1}	Uniformity	Uniformity
		inches		%	
1	Romaine	40	58	54	82
2	Romaine	80	75	82	87
3	Romaine	80	81	73	62
4	Iceberg	40	80	75	89
5	Romaine	40	83	74	91
6	Romaine	80	46	66	79
7	Romaine	80	86	78	77
8	Iceberg	40	88	46	89
9	Romaine	80	38	32	43
10	Iceberg	80	81	80	86
11	Romaine	40	87	74	99
Average			73	67	80

^{1.} Distribution Uniformity of the lowest quarter

Uniform fertigation applications: Words of wisdom

- 1. Start injection after drip system is fully pressurized and leaks are fixed
- 2. Inject upstream of a filter to prevent clogging of drip emitters
- 3. Injecting slowly as possible provides a more uniform distribution
- 4. After injection, irrigate a sufficient time with clean water to flush out all of the injected fertilizer from the drip system
- 5. Avoid over-irrigating in subsequent irrigations to prevent leaching losses of nitrate

Travel time: how long does the fertilizer need to distribute evenly?

Inject here

Travel time depends mostly on:

- Injection location
- Flow rate of tape
- Length of beds

Well Pump

Well Pump

Fertigation: Is there sufficient distance for mixing?

Standard Design

Static Mixers

 Option for short mixing distances
 Install between injection point and submain

 Pressure loss of 5 to 10 psi depending on flow rate and size of static mixer

Injection Quills

Size to deliver fertilizer to the center
 of the pipe

Optimizes mixing of fertilizer with water stream

Main Points

- Uniform pressure is necessary to have a high distribution uniformity with drip.
- Check and record pressure during every irrigation.
- Use pressure reducing valves (PRV) to maintain consistent pressure in irrigation blocks.
- Pressure reducing valves can be used to increase distribution uniformity on sloped fields.
- Attaining uniform fertilizer applications using chemigation requires that the drip system has a high distribution uniformity and that the correct practices for injecting fertilizers are followed.

Thank you! Muchas Gracias!