Transition from methyl bromide to fumigant & nonfumigant alternatives for strawberry production in California

Steve Fennimore, UC Davis

UCCE Santa Cruz, February 4, 2016

The big picture

California situation

- * Land & labor costs are increasing, & profitability requires high return: blackberry, cut flowers, raspberry, & strawberry ...
- At present strawberry producers need fumigants to suppress soilborne diseases
- * Strawberry requires a long-term plan to reduce fumigant use
- Strawberry growers need short- and medium- term solutions to suppress soilborne pests

What to do?

- Public/private research teams need to help develop short-, medium- & longterm solutions
- * No one <u>knows</u> the short path to successful strawberry production w/o fumigants
- Short- & medium-term research
 -suppress soil pests with fumigants, &
 non-fumigants
- * Long-term research must be based on IPM fundamentals

pest management Fundamentals

- Strategy action plan based on needs of the crop & pest biology
- * Tactics pest control methods

pest management strategies

- * Prevention- exclude the pest from the non-infested field
- Management pest is established and must be managed by multiple tactics
- * Area wide pest management requires regional cooperation
- * Eradication elimination of the pest

pest management Tactics

- * Manipulation of the pest so it does not harm the crop
- * Manipulate the crop so that it tolerates the pest
- * Manipulate the environment to suppress the pest

Pest manipulation

- Prevention keep the pest out of the field
- * Pesticides control the pests
- * Physical controls substrate production, steam disinfestation

Pest manipulation - prevention

- * Reduce pathogen in rotational crops e.g. lettuce
- * Use modern molecular techniques and aerial surveillance to identify where the pest is located in field

Pest manipulation – Verticillium prevention in lettuce

- * One tactic being tried in lettuce fumigate at crop termination
- * We should also be looking at other crop termination methods that do not involve fumigants e.g.
 - * Steam
 - * Flaming

Pest manipulation- Spatial pest variation

* Pathogens are not uniformly distributed yet we treat them as uniform

Theoretical Pic dose required to control a known pest

		Anulat	INN	
Area	Acres (Field %)	Pathogen severity (10=severe, 0= none)	Chloropicrin dose needed (lbs./A)	Chloropicrin used (lbs.)
А	12 (15%)	9	300	3,600
В	24 (30%)	4	100	2,400
С	44 (55%)	0	0	0
TOTAL	80 (100%)			6,000

80 acres receiving 250 lbs./A of Pic = 20,000 lbs. Pic

Diagnostic testing of soilborne pests

- Poole et al. 2015 Phytopathology 105:1069-1079 used DNA testing of soil for pathogens to predict root diseases in wheat with a high degree of accuracy
- * At what point will the cost of field mapping of soilborne diseases become cheap enough to pay for with reduced fumigant expense?

Pest manipulation - Fumigation

Pest Control Efficacy of the fumigant TRX-58 in Flower, Mellano & Co.

Carlsbad, CA. Fumigation: 10/2/2014

7 Treatments, 3 Replicates

Treatment	Rate
MB Pic	350 lbs./a
Pic Clor 60	350 lbs./a
Dominus + Pic 67:33	40 g/a
Dominus	40 g/a
TRX-58	500 lbs./a
TRX-58 + Pic 67:33	400 lbs. /a
non-treated	-

Pathogen control Carlsbad, ca

Treatment	Rate	Fusarium (p/g soil)		Pythium	Pythium (p/g soil)	
		PRE	POST	PRE	POST	
MBPic	350 Ibs./A	183	0	17	0 c	
Pic-Clor 60	350 lb./A	1365	0	17	0 c	
Dominus	40 GPA	259	47	35	80 a	
Dominus/Pic	40 GPA	328	38	28	36 b	
TRX-58	500 lb./A	469	201	16	0 c	
TRX-58/Pic	400 Ibs./A	210	74	35	1 c	
Nontreated	0	350	721	13	39 b	

Jim Gerik, USDA-ARS

Weed control Carlsbad

Treatment	Rate	Ranunculus	Delphinium	Weed time
		Weed	s (no./A)	Hrs. /A
MBPic	350 lb/A	8,349 c	6,587 b	69 e
Pic-Clor 60	350 lb/A	1,597 c	2,569 b	99 cde
Dominus	40 GPA	61,976 a	54,629 a	223 ab
Dominus/Pic	40 GPA	30,686 abc	43,319 a	169 bc
TRX-58	500 lb/A	17,134 bc	1,742 b	87 de
TRX-58/Pic	400 lb/A	27,564 abc	7,050 b	157 bcd
Nontreated	0	52,708 ab	51,480 a	266 a

Strawberry results

Dominus (AITC) K-Pam evaluation in

- * Treatments 2014-15 Stripapplied rry
 - * Control
 - * K-Pam 31 & 62 GPA
 - * Dominus 20 & 40 GPA
 - * Pic Clor 60 20 GPA
 - * Pic Clor 60 fb K-Pam 20 fb 31 GPA
 - * Pic Clor 60 fb Dominus 20 fb 20 GPA
 - * K-Pam fb Dominus 31 fb 20 GPA
- * 4 replicates per treatment, Oct 11 & 15, 2014
- Weed seed bioassay, local weeds, nematodes, pythium, Verticillium 9 & 18 inches deep

Pathogen control

Treatment	Rate	Nematode	Pythium	Verticillium
	GPA	No./ 50 g soil	PPg soil	MS/g soil
K-Pam	31	18 c	42 bc	3 bc
K-Pam	62	65 bc	27 bc	5 bc
Dominus	20	179 bc	149 bc	8 bc
Dominus	40	252 b	221 b	11 b
Pic fb K-Pam	20 fb 31	1 c	0 c	2 c
Pic fb Dominus	20 fb 20	1 c	0 c	1 c
K-Pam fb Dominus	31 fb 20	3 c	0 c	8 bc
Nontreated	0	1806 a	1239 a	40 a

Becky Westerdahl, nematodes; Frank Martin, pythium; and Steve Koike, Verticillium.

Weed densities & strawberry fruit yield

Treatment	Rate	Weeds	Fruit
	GPA	No./ A	Lbs./A
K-Pam	31	13,068 b	53,462 c
K-Pam	62	17,424 b	58,314 abc
Dominus	20	13,068 b	58,494 ab
Dominus	40	8,712 b	56,978 bc
Pic fb K-Pam	20 fb 31	13,068 b	60,103 ab
Pic fb Dominus	20 fb 20	8,712 b	62,206 a
K-Pam fb Dominus	31 fb 20	13,068 b	58,499 ab
Nontreated	0	165,528 a	56,422 bc

Weed propagule control

Treatment	Rate	B. Nettle	Knotweed	Common Purslane	Yellow nutsedge
	GPA		Viabili	ty (%)	
K-Pam	31	17 c	3 c	6 b	2 c
K-Pam	62	13 cd	4 c	3 bc	0 c
Dominus	20	16 c	4 c	4 bc	14 b
Dominus	40	11 cde	12 b	3 bc	0 c
Pic fb K-Pam	20 fb 31	2 e	5 bc	3 bc	1 c
Pic fb Dominus	20 fb 20	3 de	1 c	1 c	1 c
K-Pam fb Dominus	31 fb 20	32 b	8 bc	4 bc	3 c
Nontreated	0	81 a	77 a	79 a	81 a

Summary, strawberry

* **Dominus**

*Weak control of nematodes, Pythium

- * Suppresses Verticillium & weeds
- Fruit yields were highest when Pic was included in the treatment

Summary, strawberry II

- * K-Pam
 - *Weak control of nematodes,
 - * Suppresses Pythium, Verticillium & weeds
 - Fruit yields were highest when Pic was included in the treatment

Pest manipulation soil disinfestation with Steam

The essential role for steam

- It is a non-fumigant method that kills soil pests in minutes consistently
- Steam can be a component in a variety of non-fumigant solutions
- Steam is a stand-alone soil disinfestation treatment
- Steam application is compatible with a custom fumigant business

Automatic steam application

San Juan Rd. Watsonville, CA 9/10/12

Weed Densities & Hand Weeding Times 2012-13

Treatment	Watsonville-Ranch 1		
	Weeds (no./Acre)	Time (hr. /Acre)	
Steam + mustard	6,071 b	21 b	
Steam	2,024 b	12 b	
Non-treated	101,175 a	167 a	

Mean separation using Fisher's Protected LSD P = 0.05

Pythium Control Ranch 1 2012

AB B B

Albion: % Plants With *Macrophomina* p. at Season End

b

b

а

Seasonal Fruit Yields Ranch 1

b a a

2010-2013 Findings

- * Steam controls soil pests such as Verticillium dahliae, Macrophomina phaseolina, Pythium spp. and weeds.
- * Strawberry yields in steam treated soils are comparable to yields in fumigated soils. Samtani et al. 2012; Fennimore et al. 2014

A business role for steam

- * An 80 acre farm with 72 acres cropped
- * 65 acres can be fumigated, 7 acres cannot
- * Fumigant cost \$1,900/A or \$123,500; steam costs \$5,000/A or \$35,000 for total treatment cost of \$158,500.
- Net returns above operating costs for 7 acres \$129,745 based on Albion yields vs \$16,604 for no treatment

Direct-fire Steam Generators

* Advantages

- * No steam boiler
- * Very efficient
- Water hardness

Johnson Gas Appliance, Cedar Rapids, IA

Steaming oct. 9 , 2015 Salinas, CA

Steam costs – direct fire

- Our Oct. 2015 fuel use numbers were 862 GPA propane (100% coverage)
- * Propane cost \$1.44-1.52/Gal (Oct. 2015) \$1,287/A
- * We are confident that we can improve upon this a great deal

crop manipulation - ASD

TCR – Watsonville, CA Sept. 2015

crop manipulation ASD

* Insert photo of Fuji

Steam

Fuji Ranch, Salinas, CA Sept. 2015

crop manipulation

- Cultural tactics modification of cultural practices used to grow the crop to suppress the pest. Eg. Mustard cover crops
- Host plant resistance breed for increased resistance to pests

Environmental manipulation -Substrate production

Substrate production - challenges

- * High costs >\$20,000/A more than in soil strawberry production
- * High maintenance eg. Need for watering 10 times per day
- * Little room for error. If the water is unavailable eg. Pump needs repair, the crop is imperiled

What to do?

- Public/private research teams need to help develop short-, medium- & longterm solutions
- * No one knows the short path to success
- Short- & medium-term research
 -suppress soil pests with fumigants, &
 non-fumigants
- Long-term research must be based on IPM fundamentals

summary

- * Dealing with a crisis involves going back to the fundamentals and building up
- * The California strawberry industry is dealing with a slow moving crisis
- * Long-term strategies to reduce fumigant use by the strawberry industry must be based on the fundamentals of IPM

Questions? Ideas?

University of California Value to the California Strawberry Fruit quimdustry 2014 & 2015* Vield Disease resistance Pest management Plant nutrition

Crop Bleeding since 1930

No. extension events 120 No. of field experiments 56 Funding (non CSC) \$2.5 million UC IPM & Publications

Training for future industry personnel

Extension & Research

Graduate Students & Postdoctoral Researchers

2014, 2015 M. Bolda, S. Dara, O. Daugovish, S. Fennimore, S. Koike

Proposed UC Extension position

- * At Salinas field station, within 4 hours of most California strawberries
- * Possible areas of focus:
 - Strawberry breeding collaborate with UC
 Davis breeder
 - *Management of organic strawberry
 - Sustainable small fruit production
 - Strawberry nurseries
 - *Fumigant research
- Form a research cluster with new USDA Salinas hires