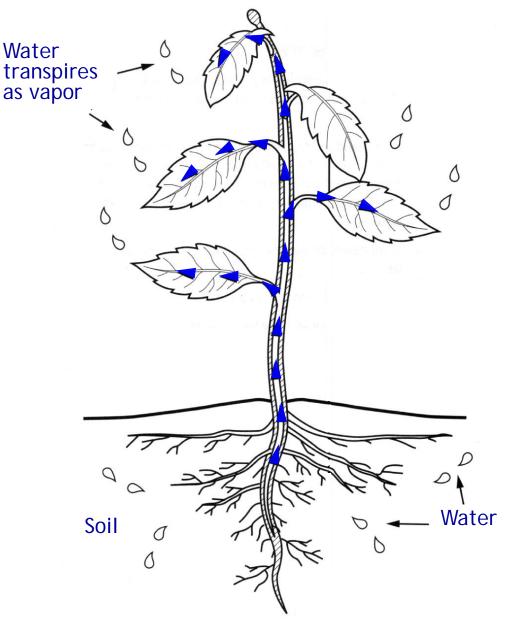
The New California Landscape

Maintaining Landscapes for Low Water Use

Loren Oki

Landscape Horticulture Specialist Dept. of Plant Sciences, UC Davis

> Kearney REC Parlier, CA October 16, 2015



Topics

- Why plants need water
- Irrigation management
 - Assessing system performance
 - Scheduling
 - Smart controllers
- Maintaining plants
 - Turf
 - Trees and shrubs
 - Edibles
- Fire Safe

Topics

Why plants need water

Soil-Plant-Atmosphere continuum

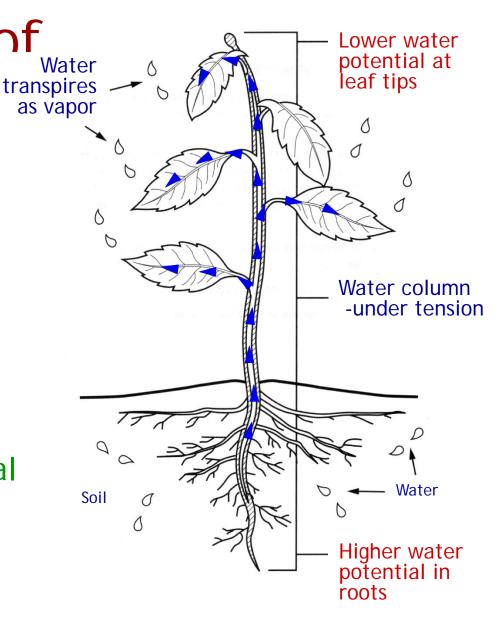
Why do plants need water?
How does water move from the soil, up a plant, and into the air?

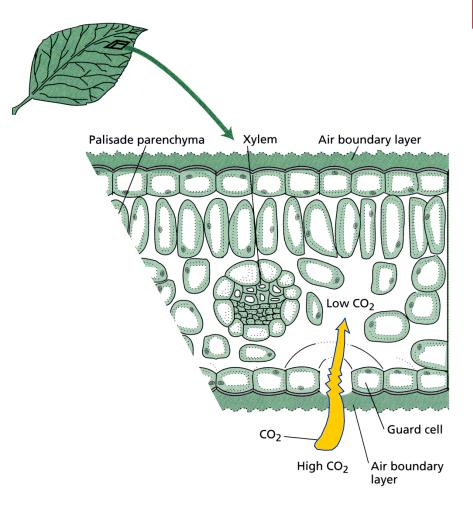
The concept of water potential

Water moves down an energy gradient

Potential energy components of water in substrates

- Matric potential
- Gravimetric potential
- Solute potential




The concept of

Water moves down an energy gradient

Potential energy components of water in substrates

- Matric potential
- Gravimetric potential
- Solute potential

Plant Water Relations

CO₂ is necessary for photosynthesisWater is lost asCO₂ is taken into the leaves

Topics

- Why plants need water
- Irrigation management
 - Assessing system performance

The Need To Measure

"I often say that when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind."

Lord Kelvin

"If it can't be expressed in figures, it is not science; it is opinion."

Robert Heinlein

Assessing system performance

- 1. Inspect the site
- 2. Tune up the irrigation system
- 3. Test the system (collect data)
- 4. Calculate performance
- 5. Interpret the information

Credit: Irrigation Association

Landscape Irrigation Auditor

certification program

Assessing system performance

- 1. Inspect the site
 - a) Meter
 - b) Main shut-off valve
 - c) Controller
 - d) Valves

Credit: Irrigation Association

Landscape Irrigation Auditor

certification program

Assessing system performance

- 1. Inspect the site
 - a) Zones
 - a) Drip: in-line, point-source, flow rates, micro spray
 - b) Overhead: fan, multi-stream rotor, gear drive rotor
 - c) Manufacturer & model, quantity
 - d) Site characteristics
 - b) Pressure: static vs dynamic

Credit: Irrigation Association

Landscape Irrigation Auditor

certification program

Assessing system performance

- 2. Tune up the irrigation system
 - Repair, replace, update
- Rebates
 - Rotary stream sprinklers, drip systems, smart controllers, conversions
 - www.ccuh.ucdavis.edu/public/drought/map

Topics

- Why plants need water
- Irrigation management
 - Assessing system performance
 - Scheduling
 - 3 methods

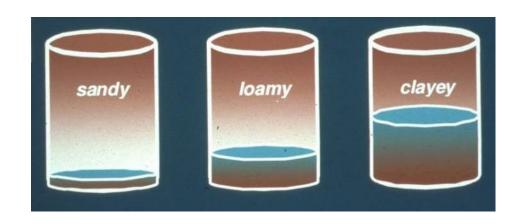
- Things you need to know
 - Distribution uniformity
 - Precipitation rate
 - Soil texture
 - Landscape and plant coefficients (K_L)
 - Climate (ET_0)

- Things you need to know
 - Distribution uniformity
 - How evenly water is applied
 - Applies to overhead and drip
 - Catch can test

- Things you need to know
 - Distribution uniformity
 - Catch can test
 - Calculate average volume collected (Avg_T)
 - Sort the volumes
 - Calculate the average of the lowest ¼ (Avg₁₀)
 - $DU = Avg_{LO} \div Avg_{T}$
 - Should be AT LEAST 0.7
 - If less than 0.7, repairs or modifications are needed

- Things you need to know
 - Distribution uniformity
 - Precipitation rate

- Things you need to know
 - Distribution uniformity
 - Precipitation rate
 - How fast water is applied

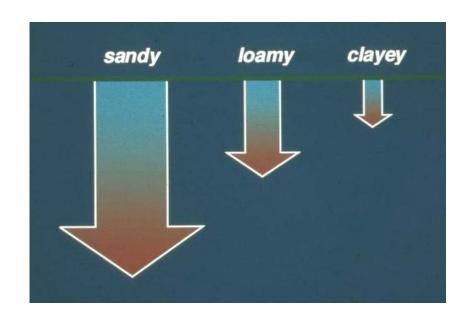

$$PR = \frac{Avg_T}{C \times T} \times 3.66$$

```
Avg<sub>T</sub> = Average of all catch can volumes (mL)
C = Throat area of catch can (sq. in.)
T = Run time (min.)
```

- Things you need to know
 - Distribution uniformity
 - Precipitation rate
 - Soil texture
 - Plant available water

Soil Texture & Irrigation

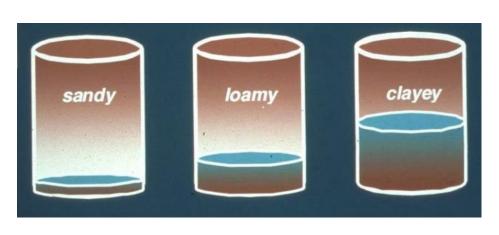
Water Holding Capacity

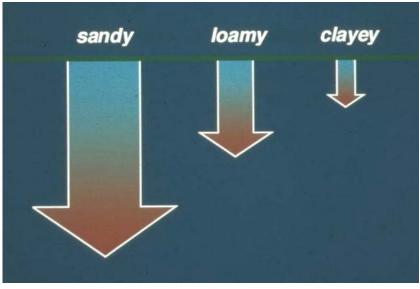


Sandy soils hold less water than clays.

Soil Texture & Irrigation

Tightly textured, fine soils like clays have slow infiltration rates.

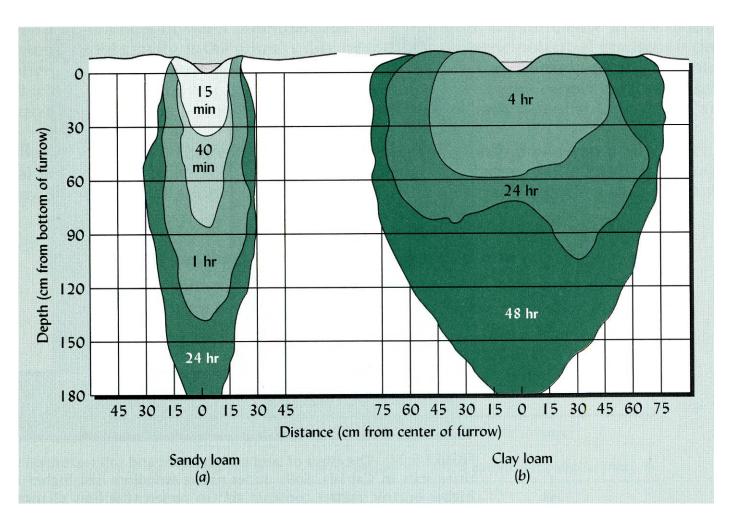

Permeability



Soil Texture & Irrigation

Water Holding Capacity (volume)

Permeability (rate)



Sandy: Apply small amounts frequently

Clay: Apply larger amounts slowly, less often

Soil Texture and Irrigation

Soil T	Plant Avail Water (cm/cm)*	
Coarse	sand / fine sand	0.05
	loamy sand	0.07
Moderately Coarse	sandy loam	0.11
Medium	loam	0.16
	silty loam	0.2
	silt	0.2
Moderately Fine	sandy clay loam	0.15
	clay loam	0.16
	silty clay loam	0.18
Fine	sandy clay	0.12
	silty clay	0.14
	clay	0.15

^{*}Irrigation Association Landscape Irrigation Auditor Manual page 177

^{**}assume 50% dry down (managed allowable depletion) and 12 inch wetted depth

Soil To	exture	Plant Avail Water (cm/cm)*	Irrig to Wet to Depth (in)**
Coarse	sand / fine sand	0.05	0.3
	loamy sand	0.07	0.42
Moderately Coarse	sandy loam	0.11	0.66
Medium	loam	0.16	0.96
	silty loam	0.2	1.2
	silt	0.2	1.2
Moderately Fine	sandy clay loam	0.15	0.9
	clay loam	0.16	0.96
	silty clay loam	0.18	1.08
Fine	sandy clay	0.12	0.72
	silty clay	0.14	0.84
	clay	0.15	0.9

^{*}Irrigation Association Landscape Irrigation Auditor Manual page 177

^{**}assume 50% dry down (managed allowable depletion) and 12 inch wetted depth

Soil T	exture	Plant Avail Water (cm/cm)*	Irrig to Wet to Depth (in)**
Coarse	sand / fine sand	0.05	0.3
	loamy sand	0.07	0.42
Moderately Coarse	sandy loam	0.11	0.66
Medium	loam	0.16	0.96
	silty loam	0.2	1.2
	silt	0.2	1.2

Irrig to wet to depth

$$= 12" \times 0.2 \times 50\% = 1.2"$$

Desired depth to wet = 12"

Plant avail water = 0.2, so $12'' \times 0.2 = 2.4''$

Assume 50% dry down (1/2 of the water is used), then 1.2"

^{*}Irrigation Association Landscape Irrigation Auditor Manual page 177

^{**}assume 50% dry down (managed allowable depletion) and 12 inch wetted depth

Soil T	exture	Plant Avail Water (cm/cm)*	Irrig to Wet to Depth (in)**	Infiltration Rate (in/hr)
Coarse	sand / fine sand	0.05	0.3	1.5
	loamy sand	0.07	0.42	1
Moderately Coarse	sandy loam	0.11	0.66	0.8
Medium	loam	0.16	0.96	0.4
	silty loam	0.2	1.2	0.25
	silt	0.2	1.2	0.3
Moderately Fine	sandy clay loam	0.15	0.9	0.1
	clay loam	0.16	0.96	0.07
	silty clay loam	0.18	1.08	0.05
Fine	sandy clay	0.12	0.72	0.08
	silty clay	0.14	0.84	0.05
	clay	0.15	0.9	0.05

^{*}Irrigation Association Landscape Irrigation Auditor Manual page 177

^{**}assume 50% dry down (managed allowable depletion) and 12 inch wetted depth

Run-time

	Soil Texture	Plant Avail Water (cm/cm)*	Irrig to Wet to Depth (in)**	Infiltration Rate (in/hr)
Medium	silty loam	0.2	1.2	0.25

- Calculating Run-time
 - Lower Boundary (LB)
 - PR = 1.35 in/hr
 - Irrigation to wet to depth = 1.2".

Run-time

- Calculating Run-time with DU
 - Upper Boundary (UB)
 - Scheduling multiplier (SM)
 - DU = 0.65
 - Lower boundary (LB) = 53 min.

- Things you know
 - Distribution uniformity
 - Precipitation rate
 - Soil texture

- Things you know
 - Distribution uniformity = 0.65
 - Precipitation rate = 1.35 in/hr
 - Soil texture = silty loam
 - Lower boundary = 53 min
 - Upper boundary = 67 min
- This is how much to water
- Now we need to know when to irrigate

- Things you need to know
 - Distribution uniformity
 - Precipitation rate
 - Soil texture
 - Landscape and plant coefficients (K₁)

Landscape Coefficients

Information on plant water use WUCOLS

www.ucanr.sites/WUCOLS

- Things you need to know
 - Distribution uniformity
 - Precipitation rate
 - Soil texture
 - Landscape and plant coefficients (K₁)
 - Climate (ET_0)

CIMIS

C alifornia

I rrigation

M anagement

nformation

S ystem

Collects weather info
Estimates plant water use
More than 120 stations

Water use reports are used with a crop or landscape coefficient to estimate site water use

http://www.cimis.water.ca.gov/cimis/

Climate

Water use models

Based on weather data

Requires previous research

Crop specific

Easy to use

Climate

Water use models

Reference ET (ET₀) is reported (CIMIS)

Crop coefficient (K_c) is necessary

Determine ET_{crop} (ET_c) to estimate crop water use

so,
$$ET_c = ET_0 \times K_c$$

Example: citrus orchard

$$K_c = 0.65$$

If $ET_0 = 0.5$ ", then

crop water use is 0.325 "
 $(0.325=0.5 \times 0.65)$

Reference EvapoTranspiration (ETo) Zones

1 Lowest ETo in California. Characterized by dens

1:

selection is somewhat subjective

CENTRAL SIERRA NEVADA
Sierra Nevada Mountain valleys east of Sacramento
with some influence from the delta breeze in summe

12 EAST SIDE SACRAMENTO-SAN JOAQUIN VALLEY Low writer and high summer ETo with slightly lower ETo than zone 14.

Monthly Average Reference Evapotranspiration by ETo Zone (inches/month)

											`		
Zone	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
1	0.93	1.40	2.48	3.30	4.03	4.50	4.65	4.03	3.30	2.48	1.20	0.62	32.9
2	1.24	1.68	3.10	3.90	4.65	5.10	4.96	4.65	3.90	2.79	1.80	1.24	39.0
3	1.86	2.24	3.72	4.80	5.27	5.70	5.58	5.27	4.20	3.41	2.40	1.86	46.3
4	1.86	2.24	3.41	4.50	5.27	5.70	5.89	5.58	4.50	3.41	2.40	1.86	46.6
5	0.93	1.68	2.79	4.20	5.58	6.30	6.51	5.89	4.50	3.10	1.50	0.93	43.9
6	1.86	2.24	3.41	4.80	5.58	6.30	6.51	6.20	4.80	3.72	2.40	1.86	49.7
7	0.62	1.40	2.48	3.90	5.27	6.30	7.44	6.51	4.80	2.79	1.20	0.62	43.3
8	1.24	1.68	3.41	4.80	6.20	6.90	7.44	6.51	5.10	3.41	1.80	0.93	49.4
9	2.17	2.80	4.03	5.10	5.89	6.60	7.44	6.82	5.70	4.03	2.70	1.86	55.1
10	0.93	1.68	3.10	4.50	5.89	7.20	8.06	7.13	5.10	3.10	1.50	0.93	49.1
11	1.55	2.24	3.10	4.50	5.89	7.20	8.06	7.44	5.70	3.72	2.10	1.55	53.1
12	1.24	1.96	3.41	5.10	6.82	7.80	8.06	7.13	5.40	3.72	1.80	0.93	53.4
13	1.24	1.96	3.10	4.80	6.51	7.80	8.99	7.75	5.70	3.72	1.80	0.93	54.3
14	1.55	2.24	3.72	5.10	6.82	7.80	8.68	7.75	5.70	4.03	2.10	1.55	57.0
15	1.24	2.24	3.72	5.70	7.44	8.10	8.68	7.75	5.70	4.03	2.10	1.24	57.9
16	1.55	2.52	4.03	5.70	7.75	8.70	9.30	8.37	6.30	4.34	2.40	1.55	62.5
17	1.86	2.80	4.65	6.00	8.06	9.00	9.92	8.68	6.60	4.34	2.70	1.86	66.5
18	2.48	3.36	5.27	6.90	8.68	9.60	9.61	8.68	6.90	4.96	3.00	2.17	71.6

ETo Zones

California

Variablity between stations within single zones is as high as 0.02 inches per day for zone 1 and during winter months in zone 13. The average standard deviation of the ETo between estimation sites within a zone for all months is about 0.01 inches per day for all 200 sites.

ALI ENERGE EVALOTIVATION

- So,
 - We know how much to apply (1.2 in)
 - Replaces ½ of field capacity
- Then,
 - We need to estimate when that amount of water is used
 - We know our plants
 - We have info about the climate

- Landscape and plant coefficients (K_L)
 - For this example, 0.4
- Climate (Water Use Rates)

Monthly Average Reference Evapotranspiration by ETo Zone (inches/month)

Zone	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Vov	Dec	Total
14	1.55	2.24	3.72	5.10	6.82	7.80	8.68	7.75	5.70	4.03	2.10	1.55	57.0

October = 4.03 in/month

 $-ET_{day} = 4.03 \text{ in} \div 31 \text{ days} = 0.13 \text{ in/day}$

How fast is our landscape using water?

```
- ET_L = ET_{day} \times K_L

- ET_{day} = 0.13 \text{ in/day}

- K_L = 0.4
```

$$ET_1 = 0.13 \times 0.4 = 0.07 \text{ in/day}$$

October

ET_0	= 0.13
$\times K_L$	= 0.4
= ET _L	= 0.07
Irrig	= 1.2

Day	Total ET _L
1	0.07
2	0.14
3	0.21
4	0.28
5	0.35
6	0.42
7	0.49
8	0.56
9	0.63
10	0.70

October

ET_0	= 0.13
$\times K_{L}$	= 0.4
= ET _L	= 0.07
Irrig	= 1.2

Day	Total ET _L	Day	Total ET _L	
1	0.07	11	0.77	
2	0.14	12	0.84	
3	0.21	13	0.91	
4	0.28	14	0.98	
5	0.35	15	1.05	
6	0.42	16	1.12	
7	0.49	17	1.19	
8	0.56	18	1.26	
9	0.63	19	0.32	
10	0.70	20	0.40	

1.19 $+ 0.07 (ET_L)$ = 1.26

October

ET_0	= 0.13
$\times K_L$	= 0.4
= ET _L	= 0.07
Irrig	= 1.2

Day	Total ET _L	Day	Total ET _L	
1	0.07	11	0.77	
2	0.14	12	0.84	
3	0.21	13	0.91	
4	0.28	14	0.98	
5	0.35	15	1.05	
6	0.42	16	1.12	
7	0.49	17	1.19	
8	0.56	18	0.06	
9	0.63	19	0.13	
10	0.70	20	0.20	

October

ET_0	= 0.13
$\times K_L$	= 0.4
= ET _L	= 0.07
Irrig	= 1.2

Day	Total ET,	Day	Total ET,	Day	Total ET,
1	0.07	11	0.77	21	0.27
2	0.14	12	0.84	22	0.34
3	0.21	13	0.91	23	0.41
4	0.28	14	0.98	24	0.48
5	0.35	15	1.05	25	0.55
6	0.42	16	1.12	26	0.62
7	0.49	17	1.19	27	0.69
8	0.56	18	0.06	28	0.76
9	0.63	19	0.13	29	0.83
10	0.70	20	0.20	30	0.90

October

ET_0	= 0.13
$\times K_{L}$	= 0.4
= ET _L	= 0.07
Irrig	= 1.2

Day	Total ET,
1	0.07
2	0.14
3	0.21
4	0.28
5	0.35
6	0.42
7	0.49
8	0.56
9	0.63
10	0.70

For more accuracy

- Use actual instead of historical data
- Obtain daily ET₀
 from CIMIS
- Calculate & accumulate actual ET_L

- Determine when to irrigate
 - Irrigation application = 1.2 in
 - $-ET_1 = 0.07 in/day$
- Method 1
 - Accumulate ET_I daily
 - When accumulated total reaches 1.2 in
 - Irrigate!
- Method 2
 - $-1.2 \text{ in} \div 0.07 \text{ in/day} = 17.1 \text{ days}$
 - Irrigate every 17 days

Method 3

- ccuh.ucdavis.edu"irrigation scheduling worksheet"
- Conduct catch can test
- Enter catch can volumes and other information
 - Depth to wet, designated days
- Calculates:
 - DU, PR
 - Run time (duration and cycles)
 - Annual irrigation calendar

Topics

- Why plants need water
- Irrigation management
 - Assessing system performance
 - Scheduling
 - Smart controllers

Smart Controllers

- What they do
 - "automatically" adjust irrigation to "plant water needs"
 - Information needed: See previous sections irrigation scheduling
 - Irrigation system specifics
 - Plant mix
 - Slope
 - Weather

Smart Controllers

- How they adjust
 - Not all controllers are "good"
- Programs are adjusted in two ways:
 - 1. Modify run times, fixed schedule
 - 2. Modify schedule, fixed run times

Topics

- Why plants need water
- Irrigation management
 - Assessing system performance
 - Scheduling
 - Smart controllers
- Maintaining plants
 - Turf
 - Trees and shrubs
 - Edibles

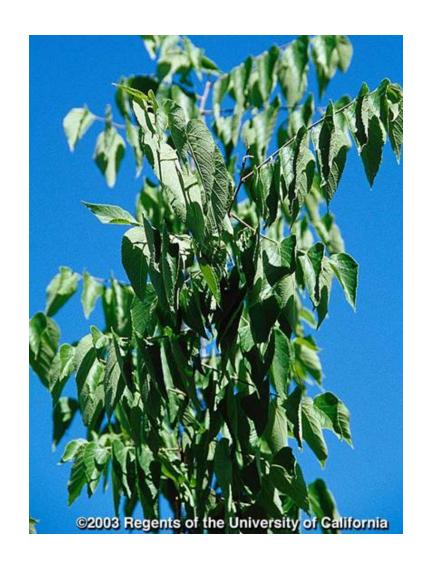
Turf

Turf

Trees What's the problem?

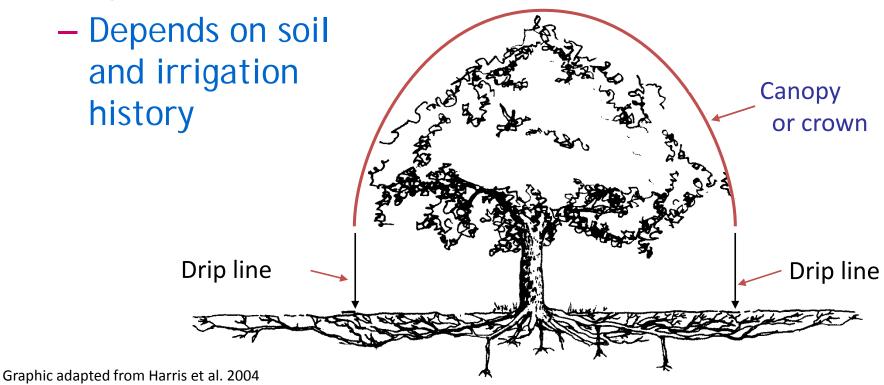
- Planted in or adjacent to turf
- Improper tree selection
- Poor irrigation management
- Shallow roots

A Common Sight in 2014



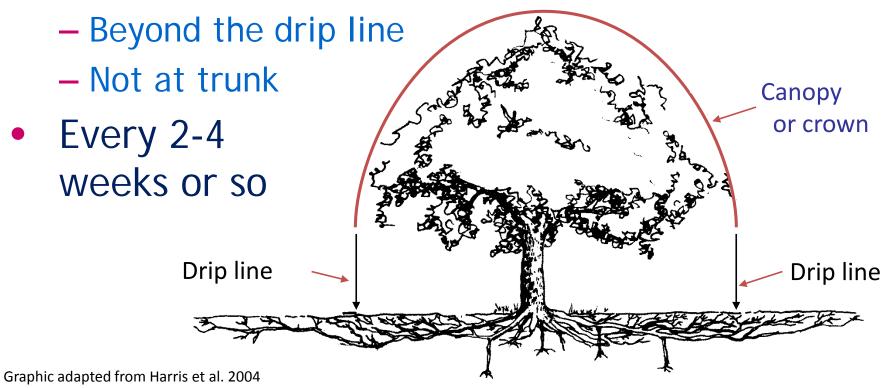
Recognize water stress

- Incipient
 - Color change to bluish or grayish green
- Temporary
 - Flagging, wilting
- Permanent wilting
 - Desiccation, drying
 - Nonrecoverable

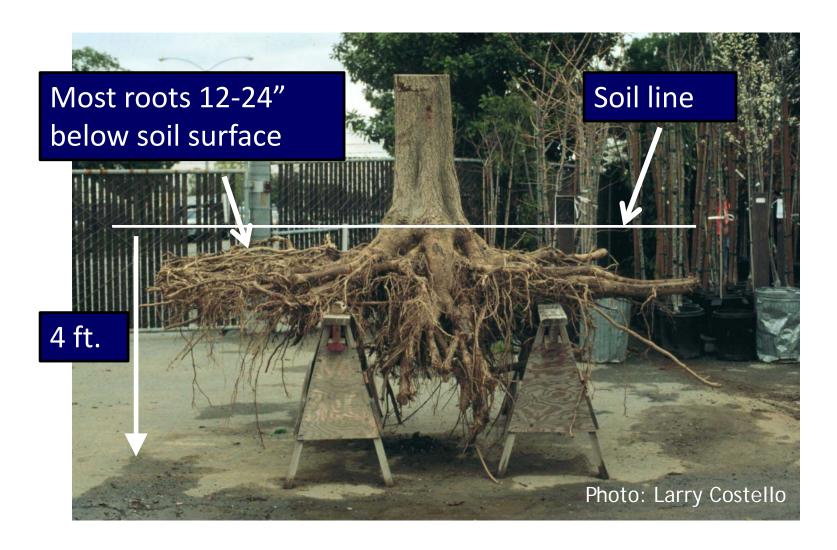

Secondary effects

- Susceptibility to:
 - Insects
 - e.g., Borers
 - ambrosia beetles
 - longhorned eucalyptus borers
 - Diseases
 - e.g., Root rots
 - Phytophthora and Oak root fungus
 - Armillaria

Tree roots


- Relationship to canopy
- May be deep

Where to Irrigate


Deep to 2 -3 feet

Beneath the canopy

Mature Gingko Tree

Considered Deep Rooted

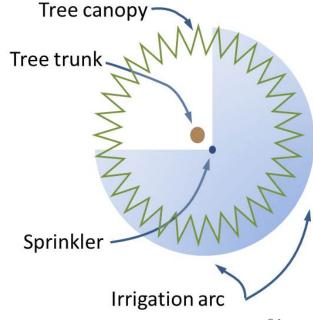
Tree Ring Irrigation Contraption

Loren Oki and Dave Fujino

- Input info for 1' spacing:
 - Canopy radius, soil type, no. of 100' drip lengths
- Calculates irrig. run time to wet soil to 36" deep
- http://ccuh.ucdavis.edu/
 - · Search: CCUH TRIC
- ~\$100 for parts

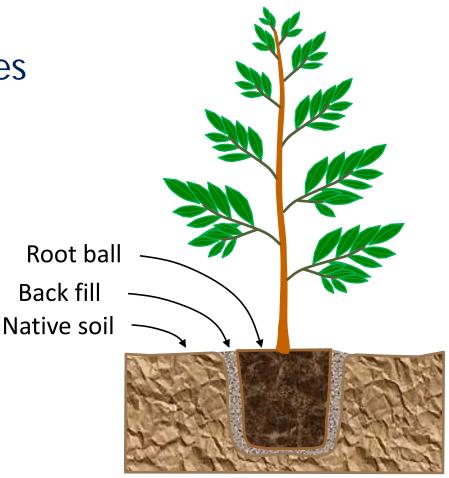
Rotary System Irrigation Contraption

Loren Oki and Dave Fujino



 Runtime depends on soil type

http://ccuh.ucdavis.edu/


-Search: CCUH RSIC

Tree roots

- Recently planted trees
 - Roots are mostly within the container soil ball
 - Roots may be just entering the native soil
 - Will take several years to fully establish

Topics

- Why plants need water
- Irrigation management
 - Assessing system performance
 - Scheduling
 - Smart controllers
- Maintaining plants
 - Turf
 - Trees and shrubs
 - Edibles

Edibles

- Use the same principles as for landscapes
 - Be aware that "production" is usually associated with higher water use
 - To maximize production, minimize water stress
 - Maintain soil moisture to avoid water stress
 - Productivity is related to photosynthesis
 - Photosynthesis is dependent on CO₂
 - CO₂ enters through stomates
 - Stomates close with water stress

Topics

- Why plants need water
- Irrigation management
 - Assessing system performance
 - Scheduling
 - Smart controllers
- Maintaining plants
 - Turf
 - Trees and shrubs
 - Edibles
- Fire Safe

Fire Safe

- ucanr.edu/sites/SAFELandscapes
- CalFire (fire.ca.gov)
- readyforwildfire.org

Topics

- Why plants need water
- Irrigation management
 - Assessing system performance
 - Scheduling
 - Smart controllers
- Maintaining plants
 - Turf
 - Trees and shrubs
 - Edibles
- Fire Safe

Websites

DU, PR, and schedule calculator

ccuh.ucdavis.edu/public/drougnt/ landscape-irrigation-system-evaluationmanagement

Websites

SoilWeb application

http://casoilresource.lawr.ucdavis.edu/soilweb-apps

Websites

UCD Irrigation Trials

http://ccuh.ucdavis.edu/academia/ TrialsOverview2.pdf

