New Developments in Tomato and Lettuce Pest Management in California

Tom Turini University of California Agriculture and Natural Resources Vegetable Crops Advisor Fresno and Kings Counties

Overview – Recent challenges in Central CA

- Tomato
 - Fusarium diseases
 - Beet curly top virus/Beet leafhopper
 - Stink bug
- Lettuce
 - Fusarium wilt
 - Thrips-transmitted viruses

Overview – Recent challenges in Central CA

- Tomato
 - Fusarium diseases

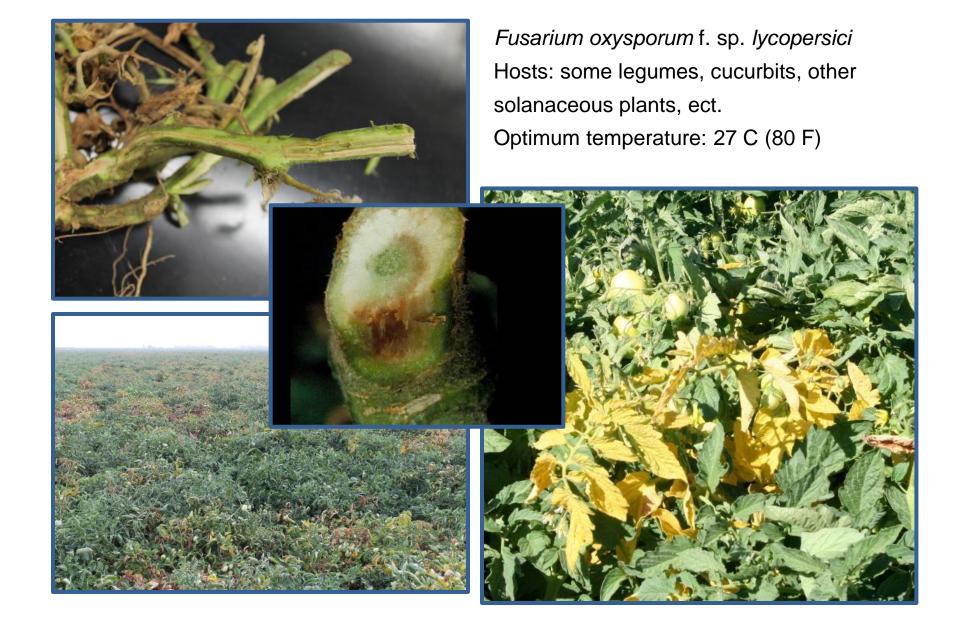
Fusarium Diseases of Tomato Common in Central California

Fusarium Foot Rot *Fusarium solani* f. sp. *eumartii*

Fusarium Crown and Root Rot *Fusarium oxysporum* f. sp. *radicis-lycopersici*

Fusarium Wilt *Fusarium oxysporum* f. sp. *lycopersici* Race 1 Race 2 Race 3

Fusarium Foot Rot



Fusarium solani f. sp. *eumartii* Hosts: Tomato, potato, eggplant

Fusarium Crown and Root Rot

Fusarium oxysporum f. sp. *radicislycopersici* Hosts: some legumes, cucurbits, other solanaceous plants, ect. Optimum temperature: 18 C (64 F)

Fusarium Wilt

Control Options for Fusarium Pathogens of Tomato

- Containment Sanitation, limit movement of infested soil and plant material.
- Resistant varieties Resistance to 1 and 2 are common in commercial varieties; 3 is present in very few & Crown and Root Rot is also available in very few.
- Crop rotation away from susceptible crops will reduce levels of the pathogen in the soil, but will not eliminate risk if susceptible crop is planted.
- Avoid root knot nematode-infested soils.

Root Knot Nematode in Tomato

Meloidogyne hapla, M. incognita, M. javanica, and M. arenaria

- Resistant varieties are widely available.
- Resistance is not effective against all species.
- Resistance-breaking nematodes are present in tomato production areas in Central California.

Overview – Recent challenges in Central CA

- Tomato
 - Fusarium diseases
 - Beet curly top virus/Beet leafhopper

Beet curly top virus

CE Agriculture and Natural Resources Cooperative Extension

Beet leafhopper Circulifer tenellus

- The only vector of the curly top viruses.
- Four to 5 generations in California
- Strong flier

• Favored by warm dry conditions

- Photo by Lori Dunning
- Introduced from the Middle East ~100 years ago.
- Tomatoes and melons are not preferred hosts

Host Range: > 300 species

- Crops: beets, beans, tomatoes, peppers, cucumbers, squash, muskmelon, watermelon, spinach.
- Weeds: filaree, perennial pepperweed, Buckhorn plantain, Russian thistle and mustard species

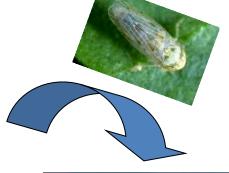
Bassia spp.

Russian thistle

Filaree

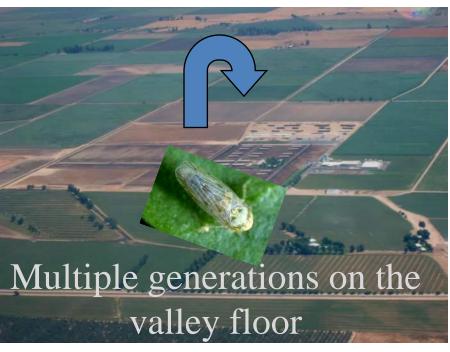
Goosefoot

Peppergrass



Buckhorn plantain

Curly Top Disease Cycle

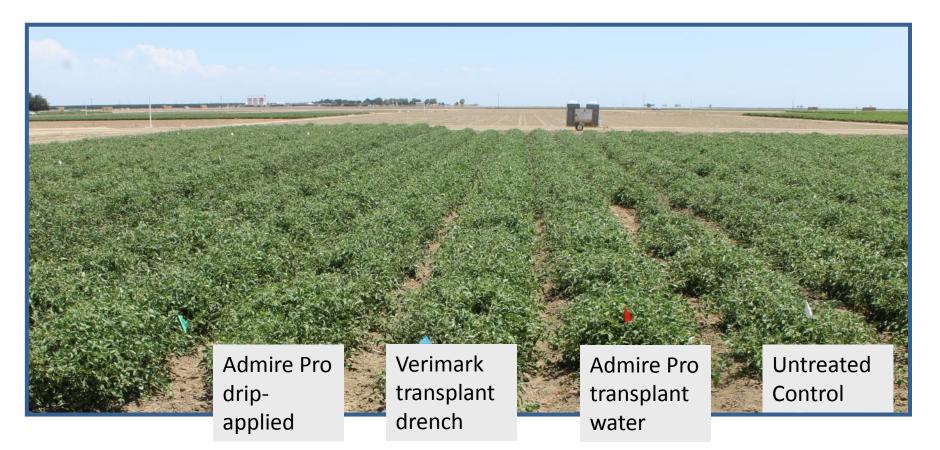


Spring: adult leafhoppers migration

Fall: adult leafhoppers migrate for overwintering in the foothills

From Gilbertson Presentation 9 May 2013.

Cultural Control


- Increase planting density
- Sanitation: weed control on roadsides, ditch banks, young orchards and vineyard
- Where possible and needed, treat weeds with insecticide before mowing or disking: If it is during production of susceptible crops.

Insecticide Treatment of Crop

- Use with other management tactics
- Under conditions of very high pressure, may not provide commercially acceptable levels of control
- The objective is to reduce the number of times that a leafhopper transmits the virus

Insecticide Program Comparison, 2015

- University of California West Side Research and Extension Center Five Points
- Sun 6366 processing tomato plants were transplanted on 22 May
- 6 treatments were compared in 4 rep RCB design 200 ft long plots
- Total plants per plot recorded on 17 Jun, BCTV symptomatic plants were recorded 22 Jun and at 14 day intervals; Harvested on 10 Sep

Overview – Recent challenges in Central CA

- Tomato
 - Fusarium diseases
 - Beet curly top virus/Beet leafhopper
 - Stink bug

Extremely High Population Densities in San Joaquin Valley Processing Tomatoes, 2013-14

Stink Bugs Associated with Damaged Tomatoes from 2013-2014 were Consperse

Consperse stink bug: Euschistus conspersus

Biology

- Overwinter as adults on the ground under cover, or on weeds.
- In March or April, they move from the overwintering site mate and ley eggs
- There are multiple generations per year dependent upon temperatures

Management

- Trapping, degree day model to target nymph stage, which is more sensitive to insecticides.
- Pyrethroid and neonicotinoid insecticides are effective if coverage is good.
- In fall, destroy overwintering habitats near sites where tomatoes will be planted in spring.

Overview – Recent challenges in Central CA

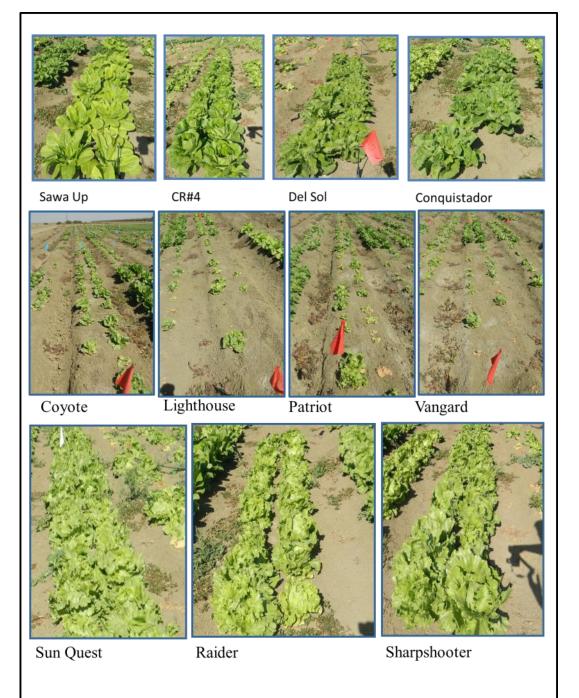
- Tomato
 - Fusarium diseases
 - Beet curly top virus/Beet leafhopper
 - Stink bug
- Lettuce
 - Fusarium wilt

Fusarium Wilt in Lettuce

Fusarium oxysporum f. sp. *lactucum*

Biology

- Temperature: 46° 90°F (optimum: 82°F)
- Lettuce is only affected by *F. oxysporum* f. sp. *lactucum* and this pathogen does not cause disease in other plants.
- Survives on surfaces of roots of other plants and in resting structures.
- Soil inoculum levels decline substantially over 5 years



Management

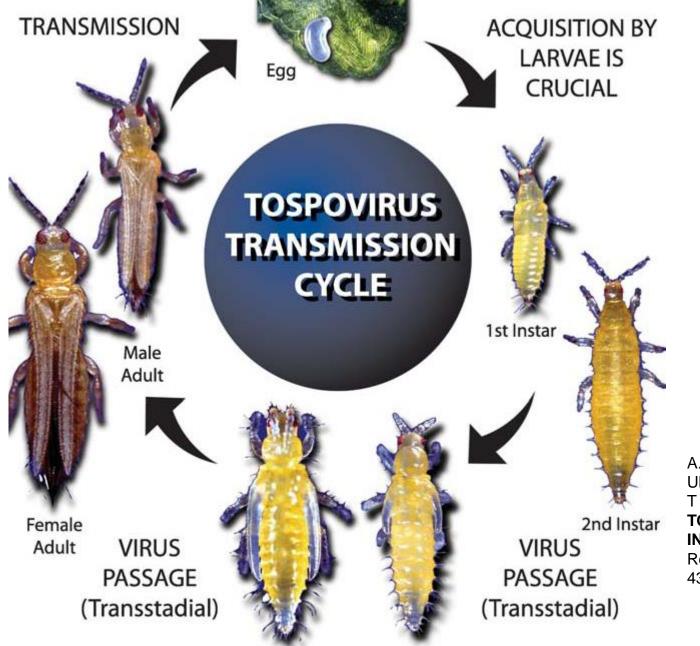
- Avoid planting lettuce in fields with a history of this disease.
- Sanitation: Avoid moving soil from an infested field to a clean field.
- Susceptibility of lettuce varieties to *F. oxysporum* f. sp. *lactucum* differs

Response of lettuce varieties to *F. o.* f. sp. *lactucum*, Coalinga, 2012

Overview – Recent challenges in Central CA

• Tomato

- Fusarium diseases
- Beet curly top virus/Beet leafhopper
- Stink bug
- Lettuce
 - Fusarium wilt
 - Thrips-transmitted viruses


Tospoviruses: Thrips transmitted viruses

Impatience necrotic spot and Tomato spotted wilt virus

Biology

- Tomato spotted wilt virus has over 800 plant hosts: including tomatoes, peppers, radicchio, as well as many weeds.
- Impatiens necrotic spot virus has a smaller host range, though this virus still infects a large number of ornamental plants and a few vegetable crops.

Pupal Stages Do Not Feed

A. E.Whitfield, D. E. Ullman, and T L. German. 2005. **TOSPOVIRUS-THRIPS INTERACTIONS.** Annu. Rev. Phytopathol. 2005. 43:459–89

Tospovirus Management

Before planting

- evaluate planting location and time
- implement weed management
- use virus- and thrips-free transplants

During the season

- monitor fields for thrips
- manage thrips
- rotate insecticides
- monitor fields for tospovirus and remove infected plants
- implement weed management

After harvest

- promptly remove and destroy plants after harvest
- control weeds/volunteers

Thank you

Tom Turini UCCE, Fresno/Kings Vegetable Crops taturini@ucanr.edu 559-375-3147

Stink Bug Species Reported in CA

Say's stink bug complex: *Chlorochroa* sayi and *Chlorochroa* uhleri

Consperse stink bug: *Euschistus* conspersus

Redshouldered stink bug: Thyanta pallidovirens

Southern green stink bug: *Nezara viridula*

Stink Bugs Recently Reported in California



Euschistus servus Brown stink bug Halyomorpha halys **Brown marmorated**

UC CE University of California Agriculture and Natural Resources Cooperative Extension

Slide adapted from Goodell 2014

Brown marmorated stink bug (BMSB), Halyomorpha halys

Brown vs. Consperse

Slide adapted from Goodel 2014

Influence of Insecticide Applications on BCTV incidence, Five Points, 2015

	BCTV (%)		
	22 Jun	1 Jul	14 Jul
Untreated Control	9.9	12.1	13.9
Verimark 13.5 oz/A tray drench (5/21/15)	2.8	3.7	5.7
Admire Pro 4 oz/A transplant water (5/22/15) Silvanto 2 fl oz directed foliar (5/22/15) Admire Pro 6.5 Drip (6/22/15)	7.8	8.1	10.3
Admire Pro 10.5 oz/A transplant water (5/22/15)	5.3	6.8	8.0
Silvanto 2 fl oz directed foliar Admire Pro 6.5 Drip (6/22/15)	11.7	12.8	11.5
Admire Pro 6.5 Drip (6/22/15)	10.4	11.8	9.7
LSD _{0.05}	4.29	3.18	3.87
CV (%)	35.95	22.88	26.06

Acknowledgements Stink bug

- California Tomato Research Institute
- Peter Goodell: UC IPM Kearney Ag Center
- Frank Zalom : UC Davis Entomology
- Les Ehler : Retired UC Davis
- Managers and PCA's of large scale ag operations in Fresno-area
- West Side Research and Extension Center

Acknowledgements: Beet Curly Top

- Robert Gilbertson
- Ozgur Batuman
- Neil McRoberts
- Daniel Delgado
- UC WSREC staff
- California Department of Food and Agriculture
- Growers and Ag consultants in Fresno and Kings Counties

