Keeping Plants Alive Under Drought or Water Restrictions ... and Planning for the Future!

by Janet Hartin, Ben Faber, Loren Oki, and David Fujino

The California drought is a very serious issue that impacts all Californians. The purpose of this publication is to provide credible information regarding keeping outdoor plantings alive during drought and under water restrictions. Topics covered include symptoms of water stress, tips to conserve water in your current landscape, minimum water needs of various types of plants, and the best time to plant a drought-efficient landscape and tips for its success.

Overview

Plants that do not receive enough water will eventually show signs of water stress. During a drought or under governmental restrictions aimed at water conservation keeping plants alive can be particularly difficult. Although plants vary in the amount of water they require for optimal growth and development, most exhibit characteristic symptoms when they are in need of water. Because plants need to be

Figure 1 - Drought damage on a rose plant. Photo credit: UC IPM

Figure 2 - Salt damage mimicking drought damage on avocado. Photo credit: UC IPM

watered at an early stage of water deficit to prevent irreversible damage, it is crucial to check plants regularly for symptoms of drought, preferably during the afternoon when symptoms are most evident. Also ensure that damage identified as drought stress is not due to other conditions that can mimic drought such as frost, salts, insects, and diseases.

Common symptoms of water stress include:

- Wilting or drooping leaves that do not return to normal by evening
- Curled or yellow leaves that may fold or drop, or foliage that becomes grayish and loses its green luster
- New leaves that are smaller or stem sections that are closer together than normal

Lawn grasses that retain a footprint for several minutes

Tips to reduce water waste in your current landscape and garden:

Apply water when the plants most need it. A common mistake is to underwater newly planted ornamental and edible plants and overwater established mature plants. New transplants need more frequent and shallow irrigations than established plantings. Therefore, the middle of summer is not the preferred time to replace a high water using landscape with a drought-efficient landscape. Fall or spring are better choices.

Know the water needs of plants growing in your area and adjust them seasonally. As figure 2 below illustrates, a plant adapted to the San Francisco Bay area, Riverside, and Palm Springs areas will require the most water in the hot desert area of Palm Springs. This is due to higher rates of evapotranspiration which is closely linked to the water requirement of a plant. ET is the loss of water into the atmosphere from the soil and plant surfaces (evaporation) and from the plant actively taking up water (transpiration). A common mistake is to forget to adjust automatic timers downward going into the fall.

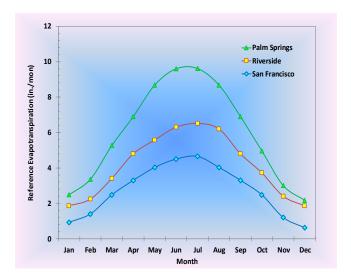


Figure 3- Differences in plant water use in the San Francisco Bay area, Riverside, and Palm Springs due to varying evapotranspiration (ET) rates. *Source*: Richard Snyder, Department of Land, Air and Water Resources, UC Davis

<u>Irrigate slightly below the root zone to draw roots down</u>. A simple and effective way to do this is to gently dig into the soil to determine how deeply the water is seeping after irrigation.

<u>Irrigate based on soil type</u>. Water plants growing in sandy soils more often but for shorter periods of time than plants growing in clay-based soils. This will reduce water waste and the chance of groundwater pollution from fertilizers and pesticides leaching below the root zone in

sandy soils, and water and chemical runoff from the surface of clay-based soils. Use the 'feel method' (Figure 4) to determine what type (texture) of soil you have. Figure 5 illustrates the drainage patterns that occur from irrigating sandy, loam (similar to compost-amended soils and clay-based soils. Note how much longer it takes the same amount of water to penetrate deeply into a clay soil compared to a sandy one and how much broader the water spreads horizontally.

Avoid summer planting. Converting a thirsty landscape to a drought tolerant one should be done in fall or spring rather than during the heat of summer. New transplants need more frequent and shallow irrigations than established plantings.

<u>Irrigate early in the morning</u>. Soil evaporation is lower than later in the day. While evaporation is also low during the night, fungal diseases may develop, particularly when overhead systems wetting leaves are used.

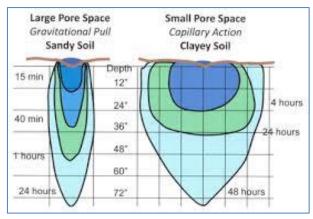


Figure 4 - Comparative movement of water downward and outward in sandy and clay soils

Credit: www.ext.colostate.edu/mg/gardennotes/213.html

<u>Don't irrigate plants showing signs of physiological drought</u>. In the heat of a mid-summer day, many plants simply cannot absorb available water as quickly as necessary to compensate for water lost due to evapotranspiration (water loss from the plant and soil, respectively, into the atmosphere). This leads to temporary mid-day wilting known as physiological drought, which will not be alleviated by adding more water. Affected plants will recover on their own during the evening.

<u>Consider installing a 'laundry to landscape' graywater system.</u> The state and most local jurisdictions have lifted or greatly lessened restrictions on these types of systems which allow irrigating landscape plants with water from a washing machine if certain conditions are met. The updated code and its provisions for use of graywater to irrigate landscapes can be found in its entirety here: http://www.hcd.ca.gov/codes/shl/2007CPC Graywater Complete 2-2-10.pdf. Contact your local city public works department for specific information on local laws which may be more restrictive.

<u>Consider installing a rainwater harvesting system</u>. These systems collect rainfall from roofs and channel it via gutters, pipes, or swales, keeping it on the landscape rather than allowing it to run off. Properly functioning rainwater harvesting systems can significantly reduce the need for supplemental irrigation in areas of measurable rainfall.

<u>Mulch</u>. Apply and maintain a three to four inch layer of mulch around garden plants and trees to keep the water in and the weeds out! Be sure to keep mulch at least one foot away from tree trunks to avoid wet trunks and crowns, which can be subject to disease-forming pathogens.

Avoid overfertilizing. Applying too much nitrogen leads to an overabundance of foliar (leaf) production and the need for more water. Most mature landscape plants will get through a season or two with no supplemental fertilizations. Fruit trees and vegetables require adequate nutrients for crop production. When water is scarce fruit trees should not be fertilized; while the crop may be sacrificed, this practice reduces water requirement and will help keep the tree alive. Annual vegetables may get by on slow release nutrients supplied by organic matter and compost.

Figure 5 - A 3-inch layer of wood chip mulch conserves water, reduces weeds and water runoff. Photo credit: Gabriel Frank, www.gardensbygabriel.com

<u>Control weeds</u>. Weeds usually outcompete garden plants for water. Pull them when they are small making sure to remove all the roots.

<u>Dust off the old broom</u>. Sweep garden debris off of sidewalks and driveways rather than hosing them off.

How to keep various types of plants alive during drought and water restrictions:

<u>Trees</u>: Most homeowners wisely choose to use whatever water is available to save their mature landscape ornamentals and fruit trees. Watering older trees slowly and deeply with a garden hose slightly below the deepest roots once in mid-spring and again in mid-summer will keep most established trees alive at least one season. Two seasons or more of drought stress can result in severe damage and even death of some species. Drought-stressed trees are often more prone to

Studies have shown that California native oaks may benefit from supplemental summer irrigation during prolonged drought even though they are relatively drought tolerant. However, they are also easily over-irrigated leading to fungal diseases such as oak root fungus (*Armillaria mellea*) and crown rot (*Phytophthora* spp). Letting the soil dry out some between irrigations will help prevent these diseases. Water should be kept at least ten feet away from tree trunks and most should be applied in the outer two-thirds of the root zone which may extend two to three times beyond the canopy of the tree.

damage from diseases and insects, as well.

Although fruit and nut trees can be kept alive during severe water shortages a season or two, fruit production may be greatly reduced or stop altogether. To produce a standard crop, deciduous fruit and nut trees need water applied steadily from bloom until harvest. Citrus trees need adequate soil moisture during spring to set fruit and steady water in summer and fall to produce acceptable size, number, and quality of fruit.

Mature trees have extensive root zones that often grow laterally two to three times the canopy width and two to three feet deep (depending on the soil type, any compaction issues, and the irrigation schedule). Active water uptake by roots occurs in this area. This requires moving drip lines and emitters further and further away from the trunk as trees mature. Irrigating too close to tree trunks can result in crown and root rot and does not apply water into the root uptake zone of the tree.

Vegetables: Vegetables are not drought efficient plants and are difficult to maintain during a drought. It is often wise to reduce the overall size of the garden and plant only your favorite types of vegetables when water is limited. Scheduling irrigations based on the water needs of the specific crop during critical periods of growth is essential for vegetable production. Hydrozoning (placing plants with similar water needs in the same area of

Figure 6 - Plant only family favorites and avoid an oversized garden that is larger than your needs.

Source: http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=13130

the garden) allows gardeners using automated drip irrigation systems to target water applications based on water needs of individual zones, reducing water waste.

Mixing organic soil amendments such as compost evenly into garden soil at least one foot deep helps retain soil moisture in the rooting area of the plant, which can significantly lengthen the allowable interval between irrigations before drought symptoms develop. While the plant still requires the same amount of water, stretching the time a plant can go between waterings can make the difference in whether garden plants live or die during a drought or imposed water restrictions. This is especially true of tomatoes, beans, lettuce, and root crops such as carrots

which require regular watering and are not tolerant of long, dry periods. Vine crops such as cucumbers and squash often fare better and can be kept alive by watering once or twice a week throughout the season. As a rule of thumb, water is most critical during the first few weeks after sowing vegetable seeds, immediately after transplanting seedlings and small plants, and during flowering and fruit production. And don't forget to add a three inch layer of mulch to hold the water in!

<u>Shrubs</u>: Most established shrubs can survive long periods of dry soil. One thorough spring watering and one or two thorough waterings in the summer keeps most mature shrubs alive for at least one season. As with other plants, prolonged drought can result in severe branch die-back and eventual plant death.

<u>Groundcovers</u>: Groundcovers often survive on about half the amount of water they would receive under optimal conditions, although some dieback may occur. To avoid serious drought stress, they should be watered once every three to six weeks from April through September, depending on location and soil conditions.

<u>Lawns</u>: Warm-season lawns, such as Bermudagrass, zoysiagrass, and buffalograss, are more drought-efficient than cool season grasses (e.g. tall fescue and ryegrass) and may survive several weeks of dryness even after partial dormancy. Conversely, cool-season grasses may die within a month or two of receiving no water. Signs of drought include wilted leaves and a bluish-gray appearance followed by yellow leaves that eventually turn brown. Established lawns, like all mature plants, prefer infrequent deep irrigations over frequent, shallower ones.

Once a lawn stops receiving adequate moisture, it will gradually turn brown and go dormant. A lawn that recently turned brown from drought can often be revived with thorough watering, but it may be difficult to revive a lawn that has been deprived of water for several weeks. This will depend on the turf variety, soil type, length of time since last irrigation, weather, and other parameters. Cutting the length of irrigation gradually over a few weeks to one-half of the amount of water listed in the <u>UC Lawn Watering Guide</u>, http://anrcatalog.ucdavis.edu/pdf/8044.pdf, will help ensure the survival of warm and cool-season lawns.

What about replacing your current landscape plants with more drought efficient ones?

Figure 7 - Beautiful, drought-efficient landscapes save water and time and reduce erosion and runoff. Photo Credit: www.ecolandesign.com

As previously stated, the heat of the summer is not the time to remove and replace your current landscape plants with drought efficient species. Plants that are not established - even drought tolerant natives require more frequent watering than the same species growing for a season or two that have developed a deeper, more extensive root system. Fall is the best time to establish native plants and fall or spring are both good times to swap thirsty plants with more droughtefficient non-natives.

Also keep in mind that often it is the irrigation delivery system that is the real water waster – not the plant! This is particularly true of sprinkler systems used to water turf and groundcovers. Avoid expending a lot of time and labor only to discover that the original cause of your water waste still exists. On average, thirty to forty percent of water applied to lawns and groundcovers by sprinkler systems is wasted due to system leaks, low/tilted heads, broken sprinklers, unmatched sprinklers, and pressure and spacing problems. You can greatly improve the distribution uniformity (evenness of watering applied across your lawn or groundcover planting) and fine-tune the performance of your system by checking your system for these problems and performing a straightforward uniformity and precipitation rate test as described in the UC Lawn Watering Guide.

Tips for planting a new water-efficient landscape:

- Select water-efficient plants that grow well in your climate using Sunset climate zones rather than USDA zones since Sunset zones are smaller and more accurate.
 - www.sunset.com/garden/climatezones/climate-zones-intro-us-map
- Hydrozone. Place plants with similar water needs together and irrigate them

Figure 8 - Drought tolerant grasses and plants surround a home in Rancho Santa Fe. Calif. Photo credit:

accordingly in high, medium, low, and very low categories. This is especially important when landscape and edible plants are irrigated by automated systems allowing precise scheduling valve by valve.

- Mix soil amendments (compost, etc.) evenly and deeply into sandy and clay-based soils (40% or more by volume) at least six inches deep before planting garden plants and small woody. This practices improves water retention in sandy soils and drainage in clay-based soils. (Avoid adding it to tree planting sites since roots prefer the higher-quality amended soils and grow outward instead of downward, resulting in poor anchorage and support for the maturing tree.)
- Choose drip over sprinkler irrigation. Unless hand-watering is practical and you are regularly home to ensure that plants receive adequate water (particularly during the first few weeks after planting) consider installing an automated drip system for ornamentals and edibles other than turf and groundcovers. Drip systems apply water directly into the root zone of the plant and soil evaporation is greatly minimized over sprinkler systems. Drip systems apply water much more slowly than sprinkler systems, reducing surface runoff and deep percolation and associated waterway pollution.
- Download other free UC ANR resources such as Sustainable Landscaping in California, http://anrcatalog.ucanr.edu/Details:aspx?itemNo=8504. For additional ideas to save water, recycle organic matter, reduce waterway pollution, reduce pests, conserve energy, and attract wildlife.

References:

Brenzel, K.N., ed. 2012. The new Sunset western garden book: The ultimate gardening guide. 9th ed. Menlo Park, CA: Sunset.

Dreistadt, S. 2004. Pests of landscape trees and shrubs. Oakland: University of California Agriculture and Natural Resources publication 3359.

Harivandi, M.A., J. Baird, J. Hartin, M. Henry, and D. Shaw. 2009. Managing turfgrass during drought. Oakland: University of California Agriculture and Natural Resources publication 8395. Available at the UC ANR website, http://anrcatalog.ucanr.edu/Details.aspx?itemNo=8395.

Harper, J.M., R. B. Standiford, and J.W. LeBlanc. UC ANR. 2015. From: http://ucanr.edu/sites/oak_range/Oak_Articles On Line/Oak Woodland Products Range Management Livestock/Summer Irrigation of Established Oak Trees/

Hartin, J.S., P.M. Geisel, H.A. Harivandi, and R.B. Elkins. 2015. Sustainable landscaping in California. Oakland: University of California Agriculture and natural Resources publication 8504. Available at the UC ANR website, http://anrcatalog.ucanr.edu/Details:aspx?itemNo=8504.

Hartin, J. S., P.M. Geisel, and C.L. Unruh. 2001. Lawn watering guide for California. Oakland: University of California Agriculture and Natural Resources publication 8044. Available at the UC ANR website, http://anrcatalog.ucanr.edu/IntegratedPestManagement/8044.aspx.

Pittenger, D.R. et al. 2006. Retail garden center manual. Oakland: University of California Agriculture and Natural Resources Publication 3492.

Pittenger, D.R. editor. 2015. Master Gardener Handbook. 2nd Edition. University of California Agriculture and Natural Resources publication 3382. Available at the UC ANR website, http://anrcatalog.ucanr.edu/ http://anrcatalog.ucdavis.edu/Details.aspx?itemNo=3382.

Schwankl, L., and T. Prichard. 1999. Drip irrigation n the home landscape. Oakland: University of California Agriculture and Natural Resources publication 21579.