

Reliant BioFuels & Applied Biorefinery Sciences

- Paul Mann, PhD
- Phil Treanor

Dr. Thomas E. Amidon, Prof SUNY-ESF

Dr. Joel R. Howard, CEO ABS, LLC

Mr. Christopher D. Wood, VP Engineering ABS, LLC

According to PricewaterhouseCoopers' - Feb 2011 report

**Growing the Future: Exploring new values and new directions in the Forest, Paper & Packaging industry.

Declining profits are the Pain

Source: PwC Global Forest, Paper & Packaging Industry Survey - 2010 Edition

How will it work?

First we must define:

"What is a Biorefinery?"

(under the ABS model)

What is a "Biorefinery"?

The Applied Biorefinery Sciences Perspective

- Refinery? An industrial plant for purifying a crude substance
- The diversity of products from, and economic strength of, a refinery is a function of:
 - Feedstock chemical composition
 - Capital investment
 - Markets

What is a "Biorefinery"?

The Applied Biorefinery Sciences Perspective

A sugar refinery is an example of a single product refinery

What is a "Biorefinery"?

- An oil refinery is a multi-product refinery
 - gasoline
 - diesel fuel
 - asphalt base
 - heating oil

- kerosene
- liquefied petroleum gas
- chemicals

Warren, PA

So, what is a "Biorefinery"?

- A "Biorefinery" under the ABS model is defined as:
 - an industrial plant where crude biomass is processed and refined into more useful products.

How can

ABS Process™

Biorefinery Technology ("BT")

Capture value not currently realized?

By generating an increased <u>or</u> improved variety of products per volume of wood

"More jobs from the same tree"

Pat Curran

President Seaway Timber Harvesting Massena, NY, USA

ABS Process™ BT

starts with raw (crude) biomass
that is
cooked in water

SUNY ESF Hot Water Extraction vessel

Bottom

Separation of products

After two hours:

- Remove wood/extract mixture from extractor
- Drain hemicellulose extract from wood

Applied Biorefinery Sciences Integrated Biorefinery – General Process Flow

Hemicellulose Product Recovery

Hemicellulose Product Recovery

Using multiple methods and pathways, separate extract mixture components into

Hydro-Torrefied™ Wood Uses **Biomass Feedstock Wood Chips Hot Water Extraction** Hydro-Torrefied[™] Hemicellulose **Wood Chips Extract Mixture**

Two potential product streams instead of just one

Raw Chips

Hydro-Torrefied™ Chips

What has happened to the chips?

After extraction:

- darker color
- structure (cellulose & lignin) still intact
- same volume, but
- 20-23% less mass

After extraction:

- structural components (cellulose & lignin) remain intact, therefore
- chips are usable and improved for making: Fuel pellets

 - Reconstituted wood products
 - Pulp
 - And other products

Hydro-Torrefied™ fuel pellets

- decreased chip bulk density (due to hemicellulose extraction)
- increased Btu content/lb
- reduced ash content/lb
- increased structural stability
 - higher % lignin (less likely to break)
 - decreased hydrophilicity (less likely to absorb water)

Nature's Biorefinery

Market potential

- California has largest dairy herd in the country
- Cows & heifers 2.7 million*
- Potential demand for C-5 Sugars
 - If fed 1 lb/day per cow
 - 1290 T/day
 - 491,000 T/yr

Hydro-Torrefied™ fuel pellets

- increased structural stability
 - higher % lignin (less likely to break = fewer "nubs")

Submerge a *Hydro-Torrefied*™ pellet & a conventional pellet in water

Potential Pellet Market

Ship to Pacific Rim* nations to:

Blend with coal

Improve air quality

Domestic Coal Burning Generators

Public entities such as Schools, etc.

Residential Pellet Stoves

^{*} Dr. Thomas Amidon met with Environmental / Energy liaison & China Coal Specialist at US Embassy in Beijing.

Testing California's ag byproducts

at

USDA Western Regional Lab at Albany, CA

offers a complementary solution to:

Torrefaction
Pyrolysis
Slash pile burning
Land filling
Biomass power

to help solve

California's Forest Health Issues

Recommendation

When developing policy to address California's forest health issues,

Develop policy that is results driven & technology neutral.