Influence of post-fire vegetation and fuels on fire severity patterns in reburns

Implications for restoration

Michelle Coppoletta, USFS Ecology Program Kyle Merriam, , USFS Ecology Program Brandon Collins, USFS PSW and UC Berkeley

Wildfire-driven management

Before wildfire

During wildfire

Wildfires across the Western US:

Shift to burned landscapes

2007 Moonlight Fire (photo credit: Sierra Pacific Industries)

2007 Angora Fire (photo credit: UC Cooperative Extension)

What does post-fire restoration look like?

How do we increase resilience of burned landscapes to future fires?

Resilience of burned landscapes

Examples where wildfires may achieve restoration objectives

Low-moderate severity fire Post-fire conditions Fuel consumption Intact overstory

(Collins et al. 2009, Lydersen and North 2012, Parks et al. 2014)

Altered landscapes

Fire suppression and past timber harvest

altered forest structure and contemporary fire patterns

Study Area

k Four wildfires (2000-2010)
k Field plots (n=305)

2012 Chips Fire reburned 126 plots

Chips Fire: observations

Initial Fires

Chips Fire: reburn observations

Places that initially burned at high severity reburned at high severity

After the 2000 Storrie Fire

After the 2012 Chips Fire

Questions

- 1) Did the severity of the initial fire and/or the amount of time between fires influence reburn severity? If so, how?
- 2) What were the important drivers of reburn severity? (vegetation, fuels, topography, fire weather....)

Goal: identify characteristics that managers could target to create more fire resilient landscapes

Fire Severity

Relative differenced Normalized Burn Ratio (RdNBR)

- Remote sensing datasets (Landsat Imagery)
- Measure changes in vegetation, soil, litter, etc. 1 year after containment

Severity	RdNBR values
High	≥641
Moderate	316-640
Low	69-315
Unchanged	< 69

From Miller and Thode 2007

Topography

Topographic Relative Moisture Index (TRMI)

& Slope

& Aspect

& Slope configuration

& Topographic position

Fire weather

Remote Automated Weather Stations (RAWs)

- ø Temperature
- σ Relative humidity
- ø Wind speed

Management Activities

- - ø Planting
 - σ Chipping, piling, and burning
 of fuels

Field Data – Vegetation and fuels

- Overstory Canopy Cover
- Shrub Cover
- Understory Cover

- Live tree density and basal area
- Snag density and basal area

Ecology CSE Plots

Surface Fuels

- & Fine woody debris
- & Coarse woody debris (sound and rotten)
- & Duff depth

- Ground Cover & Bare ground Vegetation & Rock & Litter
- & Wood

Assembled 22 predictor variables for each plot

Vegetation

Tree, shrub, understory cover (%) Live and dead tree density (ha⁻¹) Live and dead basal area (m² ha⁻¹)

Dead and down fuels

Total fine woody debris (Mg ha⁻¹) 1000 hour sound/rotten fuels (Mg ha⁻¹) Duff (Mg ha⁻¹)

Ground cover

Bare ground, rock, litter, wood, etc.

Topography

Topographic Relative Moisture Index (2 spatial scales)

Daily fire weather

Temperature, humidity, wind speed Management Activities

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO,"

Analysis Approach

What is the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity?

Fire

Severity

Initial Severity Question

Initial Severity and Time Since Fire → Reburn Severity

Fire weather, snags, and shrubs \rightarrow Reburn Temperature p < 0.001 Severity > 27.3 (°C) Snag Basal Area p < 0.001 ≤ 27.3 (°C) ≤ 43.0 m² ha⁻¹ > 43.0 m² ha⁻¹ Shrub Cover p = 0.004≤ 60% > 60% (n = 16)(n = 28)(n = 70)(n = 12)RdNBR = 628.6RdNBR = 34.9RdNBR = 262.3 RdNBR = 530.91000 1000 1000 1000 500 500 500 500 0 0 0 0 -500 -500 -500 -500 -1000 -1000 -1000 -1000

Fire weather

& Drying and preheating of fuels

& Moving moist air away from fuels

& Providing continuous flow of oxygen

& Blowing burning embers

Influence of snags on fire behavior and severity

Embers: source and receptive surface

Surface fuels: Ø Hinder suppression Ø Increase fire residence time Ø Torching live trees (preheating)

Shrubs and fire

- Well documented relationship
 Over time: increase biomass and dead fuels = increase flammability
- Traits allow survival and persistence between high severity fire events

Initial fires: increased shrub vegetation; decreased live trees and increased snags

Trying to tie it all together.....

reburn

time

Management in the face of a changing climate

Temperature

- & Influenced reburn severity
- & Increasing over time

Vegetation and Fuels ALSO important drivers of fire severity

Can be manipulated through management!

Mean annual temperature change (1930-2000); derived from the PRISM climate model Implications for restoration Snags and shrubs may influence fire severity, but that doesn't mean we should reduce them everywhere!

- & Play an important ecological role
 - σ foraging and nesting
 - σ food resources
 - σ diverse and unique communities

& Lacking in some landscapes

Species such as the Lazuli Bunting are abundant in post-fire landscapes

Implications for restoration

- Understand the role these factors play in reburn severity
- Design restoration activities so that future fires can **increase**, rather than reduce, **heterogeneity**

Conditions prior to the initial fires influenced reburn severity

- Ø Dense stands of small trees, high fuel loads

Pre-fire conditions

Basal Area threshold used as indicator of unhealthy pine forest conditions

Clue to past conditions

Restoration considerations

Post-fire restoration begins in unburned forests!

& Reduce stand density \rightarrow may reduce the density of post-fire snags and risk of high severity reburn.

& Moderate fire behavior **BEFORE** the first fire and the reburn

Once an area burns...

Identify areas with (undesirably) high densities of snags and shrub cover

 σ Selective thinning

ø Mastication

ø Prescribed Fire

Follow-up treatments to reduce surface fuels (*i.e. broadcast burning; piling and burning*)

Important considerations.....

ø Shift perspective from short-term (economic recovery)
to long-term (fire resilience)
ø Smaller snags
ø Retention of species/structures for wildlife

ø Passive Management

Summary

- Risk of future high severity fire may be higher in areas that have already burned at high to moderate severity, especially in areas that have a high density of standing snags and regenerating shrubs.
- This risk can be mitigated through management, both prior to and after an initial fire.
- Post-fire management actions should be tailored to fire severity and long-term management objectives, with a focus on enhancing resilience to future reburns

Acknowledgements

- United States Department of Agriculture Forest Service, Plumas National Forest
- & Hugh Safford, Regional Ecologist
- ℵ E. Jules, M. DeSiervo, and other students and staff from Humboldt State University;
- Plumas NF staff: W. Cartwright, B. Stewart, S. Causemaker, M. Friend, R. Tompkins, and R. Martinez
- & J. Baldwin and J. Lydersen (PSW)

Coauthors: Kyle Merriam and Brandon Collins