How grapevines use water: a journey through the vine's vascular system

Andrew J. McElrone USDA UNIVERSITY OF CALIFORNIA

Sustainable Water Use in Vineyards

Underground stream at 20m depth Menard, Texas, USA

Water absorption by fine roots

Long distance water transport in xylem

Water loss from leaves by transpiration

Cohesion-Tension Mechanism

Drought resistance:

the ability of a plant to continue growth when exposed to periods of water stress

Searching for rootstock characteristics linked to improved water use efficiency

Vitis germplasm collection- Dr. Andy Walker

Improved water uptake via extensive and/or efficient root systems

- a. large & active root system
- b. high permeability of fine roots
- c. prevent/promote leakage to soil
- d. efficient xylem transport
- e. cavitation resistance/limit embolism
- f. ability to repair embolism

a. Large & active root system

b. high permeability of fine roots c. prevent/promote leakage to soil

Water Uptake by Fine Roots

Inherent, Non-Stressed Aquaporin Expression

Aquaporins

Gambetta et al. 2012 JXB

Fine root hydraulic conductivity for 110R = permeability

New, white roots more permeable, but old roots are too

Suberization

Wet

Dry

- Decreasing permeability & leakiness \rightarrow

- Differential response among rootstocks
- How is this affected by irrigation management?
- How can we manipulate this?

Photograph

Neutron Radiograph

X-Ray

<u>110R</u> maintains water permeability into roots, but limits leakiness under drought

<u>101-14</u> water permeability decreases into roots, but maintains leakiness under drought

d. efficient xylem transporte. cavitation resistance/limit embolismf. embolism repair

Advanced Light Source Synchrotron–LBNL, Berkeley, CA

X-ray Micro-Tomography Beamline

5

......

6

Inner Space (1987)

Human hair = 100 mm

CT resolution <1.0 mm

Examples of Grapevine Xylem

TANAX- Tomography-based Automated Network Analysis for Xylem

Brodersen et al., 2011

TANAX- Tomography-based Automated Network Analysis for Xylem

Brodersen et al., 2011

Structure and # of bridge cells differ between Vitis arizonica & V. vinifera

More bridges & open bridges in *V. vinifera*

Passive reverse flow even under high transpiration- Lee *et al.* 2013

Pierce's Disease of Grapevines

Lenoir & Blanc du Bois PD resistant winegrapes Fritz Westover- Texas A&M

Live, Potted Grapevine in the CT system

Drought-induced embolism- blocks xylem

Embolism repair in grapevines

Brodersen et al 2010

V.riparia

V.champinii

Living cells responsible for embolism repair in *V. vinifera*

Currently combining: Laser Capture Microdissection, RNA seq, and HRCT

High resolution scans (5X) of grapevine stem

Visualization of vessel connections

Pedicel: Vessel structure over berry ripening

This concludes your journey

Acknowledgements

Funding Sources:

- J. Lohr Vineyards and Wines
- American Vineyard Foundation
- National Grape and Wine Initiative
- NIFA-Specialty Crops Research Initiative
- USDA-ARS Sustainable Vit CRIS
- Jim Ayars- USDA-ARS
- Felipe Barrios Masias- UC Davis
- Mark Battany- UC ANR
- Tim Bleby- Univ of Western Oz
- Daniel Bosch- Constellation Brands.
- Craig Brodersen- Yale Univ
- Arturo Calderon- UC Davis
- Sean Castorani- ARS Davis
- Nick Dokoozlian- E&J Gallo
- Ashley Eustis- USDA-ARS
- Kevin Fort- UC Davis
- Thorsten Knipfer- UC Davis
- Jerry Lohr- Grower Cooperator
- Mark Matthews- UC Davis
- Kyaw Tha Paw U- UC Davis

- Kyle Pearsall- UC Davis Jean Mari Peltier-NGWI
- Anji Perry- J Lohr V&W
- Eva Pilar Pérez Álvarez
 - **Rod Scheaffer- Constellation Brands**
- Ken Shackel- UC Davis
- Tom Shapland- UC Davis
- **Ruby Stahel- USDA-ARS**
- **Rick Snyder- UC Davis**
- Gwen Tindula- UC ANR
- Yannis Toutountzis- Constellation Brands
- Andy Walker- UC Davis
- Larry Williams- UC Davis
- Andrew Zaninovich- Sunview Vineyards

Hydraulic sectoriality?

Single Root Injections

Sustainable Water Use in Vineyards

Vascular

Rootstock Water Use

Transport

Technology to Quantify Water Use

Surface Renewal

Surface Renewal Summary

- Prototypes complete and deployed
- Validated against gold standards
- Economically viable, site specific ET
 - Patented, LLC formed
 - Amount and potentially timing
 - Research systems = less expensive

Tuletechnologies.com Tom Shapland