Soilborne problems affecting strawberries

Tom Gordon

Department of Plant Pathology

Collaborators:

Oleg Daugovish Steve Koike Frank Martin Doug Shaw

Macrophomina phaseolina

Fusarium oxysporum

Verticillium dahliae

Where do they come from?

Resident in soil

Colonizer of a previous crop

Pathogen = cause of disease

Growth on another crop but not a cause of disease

Where do they come from?

Resident in soil

Moved with soil from another location

Introduced with infected plants

Macrophomina

Fusarium wilt

Fusarium oxysporum

Management

Avoid introduction

Soil on equipment

Management

Reduce inoculum levels in soil

Pre-plant fumigation

Flat fumigation to treat the entire field is best

Efficacy of fumigants

Methyl Bromide: Chloropicrin 2:1 @ 350 pounds/acre

Chloropicrin @ 400 pounds/acre

Telone (1,3-Dichloropropene)

Metam sodium

The soil is not uniformly exposed to the fumigant

Survival of the Fusarium wilt pathogen

Effect of inoculum depth on onset of disease

Top 4 inches

4-6 inches

6-8 inches

12 – 14 inches

Six weeks after planting

Plants show symptoms of disease when inoculum is in the top 4 inches of soil

Nine weeks after planting

Rating scale: 1 - 5

Effect of inoculum depth on disease severity

Disease severity rating scale: 1 – 5; 1 = healthy and 5 = dead

Inoculum below 12"

14 weeks after planting

Inoculum below 12"

Plants are infected

Reduce inoculum levels in soil

Crop rotation

Inoculum levels decline when other crops are grown

Fusarium wilt

Specific to strawberry

Macrophomina

Wide host range

Known hosts to Macrophomina

Sunflower

Bean

Corn

Pepper

Cantaloupe

Tomato

These crops were inoculated with isolates from strawberry

Crown inoculation with infested toothpicks

Toothpicks are colonized by *Macrophomina*

Toothpick inserted in crown of the plant

Inoculated strawberry crown

Inoculated strawberries

Plants inoculated with Macrophomina from strawberry

Sunflower

Bean

Corn

Pepper

Cantaloupe

Tomato

Symptoms developed only on cantaloupe

Frank Martin, USDA-ARS

Macrophomina

Strawberry pathogen may have a limited host range

Crops to avoid because they are susceptible to Verticillium

Lettuce

Potatoes

Both can tolerate high levels of inoculum

Legumes

Infected plants are symptomless

Management

Suppressing pathogen activity in soil

Effect of soil pH on Fusarium wilt

Elevating pH to 7.0 reduced severity of Fusarium wilt of tomato

In soil fungi compete with bacteria

Acidic soil tends to favor fungi over bacteria

Soil was taken from a field naturally infested with *Fusarium oxysporum*

Soil was adjusted to pH to 6.0 or 7.0

Frequency of root infection was determined

Frequency of root infection

Disease requires entry into water conducting tissue

Most infections remain within the root cortex

Less than one in a thousand root infections extends into the water conducting tissue

Number of root infections per unit root length

Fewer root infections means a lower risk of disease

Effect of pH on infection of strawberry roots

Very high inoculum levels may minimize the effect of soil pH on infection frequency

Management of soilborne pathogens

Avoid introductions

Reduce inoculum levels

Reduce infection rates

Disease resistance

Differences in susceptibility to Fusarium wilt

Camarosa

Ventana

Currently grown UC cultivars

1 – 5 Scale; 1 = Susceptible, 5 = Resistant

San Andreas Albion

Screening for resistance to Macrophomina

Detect differences among genotypes

Differences are heritable

Results correlate with field susceptibility

Differential susceptibility to Macrophomina

Modest gains accumulate over time

Fig. 1. Changes in the mean *Verticillium* resistance score (1 = severely diseased, and 5 = no symptoms of disease) in genotypes from cross years 1987 (original germplasm) to 2005, ± standard error.

Management of soilborne pathogens

Avoid introductions

Reduce inoculum levels

Disease resistance

STRAWBERRY COMMISSION

Sustainable Agriculture Research & Education

Hansen Trust

CALIFORNIA

A HEALTHY INDULGENCE

STRAWBERRIES

Lassen Canyon Nursery Inc.

