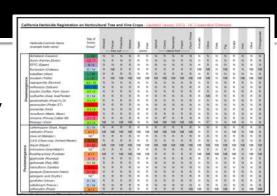


Whoa, what happened to those trees? And whose fault is it?

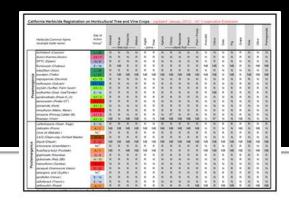
Orchard Herbicide Symptomology Refresher

Herbicide safety and symptomology

 Most T&V herbicides "can" injury trees, safety is primarily due to placement



Primary routes of exposure


- Foliar
 - Drift from off-site
 - Drift from within the orchard
 - Vapor movement (volatility, "fuming")
 - Movement on dust
- Soil/root
 - Good applications vs poor applications
 - Water or soil movement from off site
- Trunk/bark
 - Good applications vs poor applications

Refresher on herbicide action

- Herbicides with "contact" activity
- Translocated herbicides
 - Xylem-mobile
 - Phloem-mobility
- Mode and site of action where does it work?
 - Young tissue (meristems), older tissues, photosynthetic tissues, etc
 - This may provide a clue as to where symptoms occur (or are most obvious)

Primary orchard herbicide classes

- PRE Root inhibitors (Prowl, Surflan, Treflan)
- PRE Cellulose synthesis inhib (Alion, Trellis)
- PRE Pigment synthesis inhib (Serono, Command, Solicam, Callisto)
- PRE/POST Photosystem II inhib (Princep, Karmex)
- PRE/POST PPO inhibitors
 - PRE/POST Goal, Chateau, Zues
 - POST Treevix, Shark, Venue
- PRE/POST Amino acid inhibitors
 - EPSPS (glyphosate)
 - ALS inhibitors (Matrix, PindarGT, Sandea, Mission)
 - glutamine synth (Rely)
- POST Lipid synthesis inhib (Poast, Fusilade, Prism)
- POST Photosystem I inhib (Gramoxone)
- POST Synthetic auxins (2,4-D, Transline, Clarity, MCPA)
- POST "membrane disruptors" (oils, acids, and organic herbicides)

Ok, let's see some damage!

PRE - Root inhibitors (Prowl, Surflan, Treflan)

- Root inhibitors (Prowl, Surflan, Treflan)
 - Stops cell division at root tips
 - "never" see translocated symptoms, rarely and foliar activity (very lipophilic)
 - Above ground may have drought, nutrient deficiency symptoms

PRE - Cellulose synthesis inhib (Alion, Trellis)

- Few foliar symptoms from root uptake.
 - Rarely translocated.
 - Mostly see stunting due to root system truncation and lack of cell wall components

PRE – Pigment synthesis inhib (Serono, Command, Solicam, Callisto)

- The "bleachers"
 - Xylem-mobile
 - See in the newest tissue (carotinoids never form) or older tissue (carotinoids not replaced)

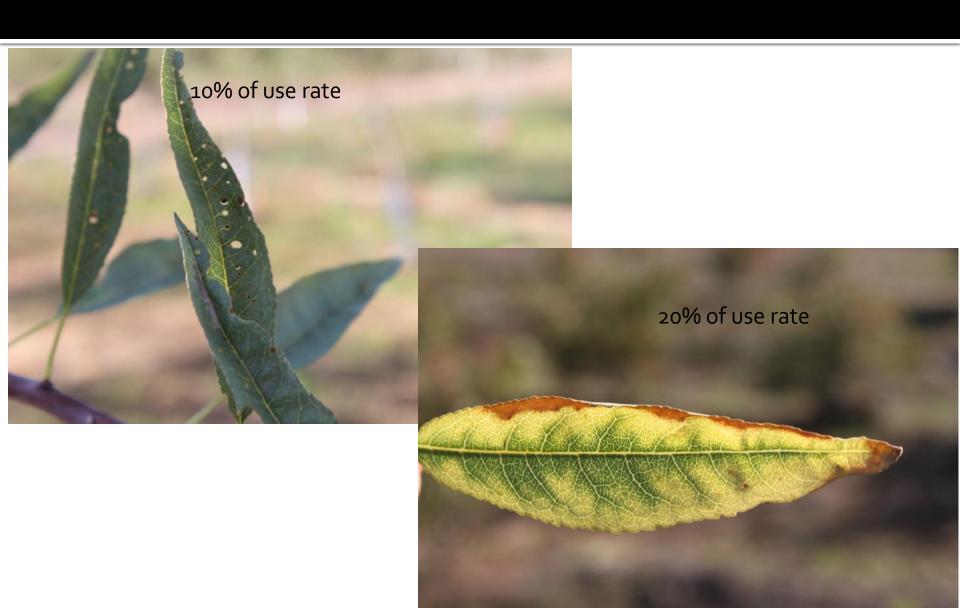
Clomazone on squash

Norflurazon on wheat

Command on walnut (5% rate) 28 DAT

PRE/POST - Photosystem II inhib (Princep, Karmex)

- Xylem-mobile herbicides. Move with transpiration
 - Chlorosis and necrosis appears at leaf margins first, then moves inward
 - Typically do not move basipitally
 - Can see veinal or interveinal chlorosis



Propanil on almond

Propanil on cherry (7 DAT)

Propanil – 28 DAT

Diuron injury on Fruitless Mulberry

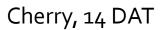
Note veinal chlorosis

Slide from W.T. Lanini

PRE/POST - PPO inhibitors (Goal, Chateau, Zues, Treevix, Shark, Venue)

- Rapid injury from membrane disruption
 - Rarely translocated, rarely foliar symptoms from soil uptake
 - Usually see injury only on sprayed leaves, new tissue ok
 - Can look like paraquat, insects, or shot-hole

PRE - Goal 2XL


- Peach seedling emerging through Goal-treated soil
- Very rare to see translocated symptoms from PPO (but not impossible)

Goal 2XL

Almond, 28 DAT

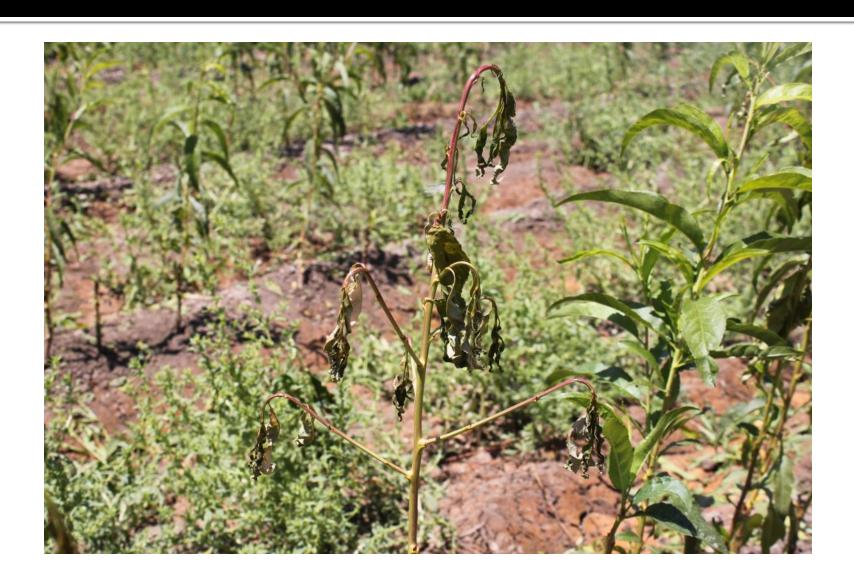
Treevix (7 DAT)

Treevix soil uptake

PRE/POST - Amino acid inhibitors - glyphosate

- #1 drift question in tree crops (mostly selfinflicted)
 - Foliar uptake. Slow acting (~7-10 d).
 - Symptoms on young tissue first
 - General chlorosis, stunting ofnew leaves
 - New growth may have shortened internodes causing "witches brooming"
- Glyphosate can persist in woody plants and show up next season if dose sufficient

Glyphosate


POST glyphosate -28 DAT

PRE POST - Amino acid inhibitors - Rely 280

- Symptoms can vary
 - General chlorosis, necrosis and drooping (ala glyphosate)
 - Sometimes necrotic spots more like a PPO or paraquat
 - Generally faster than glyphosate, slower than PPO
 - Some issues with trunk gumming in almond

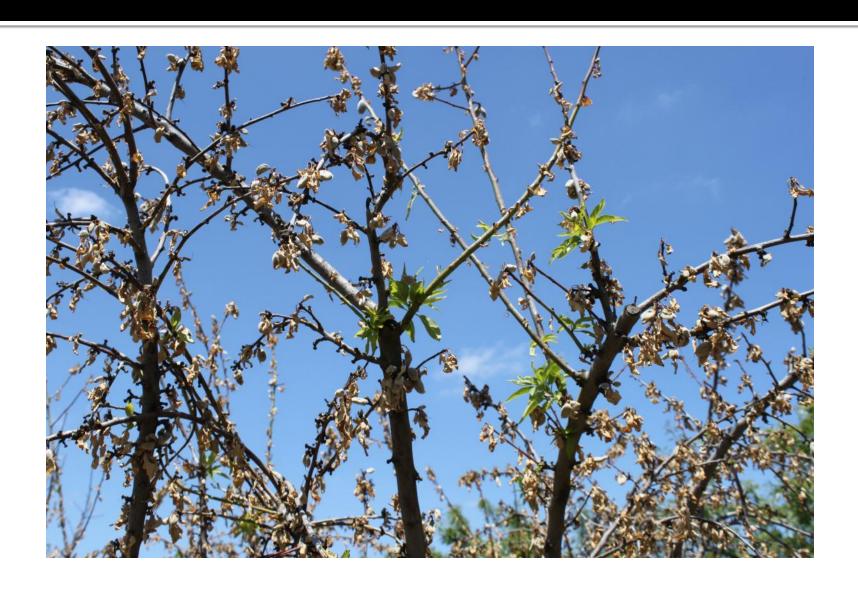
Suspected Rely drift on nursery almond

Glufosinate – 28 DAT

PRE/POST Amino acid inhibitors - ALS inhibitors (Matrix, Pindar, etc)

- Foliar exposure usually causes a general chlorosis leading to necrosis and leaf drop
 - Newest tissue (meristems) affected first
 - Typically does not "witches broom" like glyphosate
 - Sometimes kill growing points and release lateral buds (branching)

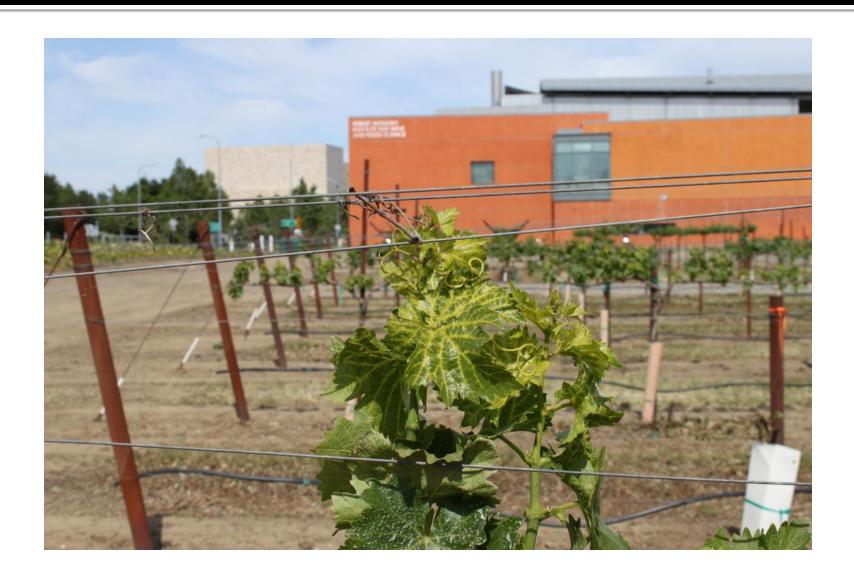
Penoxsulam – 28 DAT (foliar)



Penoxsulam – 3 MAT (soil)

Mis-spray – rate unknown

Suspected Pindar GT soil uptake


ALS inhibitors on walnut 28 DAT

Londax (bensulfuron)

Regiment (bispyribac-sodium

Suspected Oust injury on grape -probable soil or water movement from roadway

POST - Lipid synthesis inhib (Poast, Fusilade, Prism)

- Grass-specific herbicides
- Rarely injury on trees or other broadleaf plants (different form of ACCase enzyme)

Ex. Hypersensitivity to Clincher

in peach

Poast on corn

POST - Photosystem I inhib (Gramoxone)

- FAST acting.
 - Not translocated (usually).

Spotting, and rapid necrosis with limited

chlorosis.

Gramoxone - 7 DAT simulated drift

POST - Synthetic auxins (2,4-D, Transline, Clarity, MCPA, Garlon)

- Hormone mimic. Fast acting (epinasty)
 - More common to see foliar injury, occasionally soil issues (tomato sensitive)
 - Grapes are VERY sensitive

Garlon on watermelon

Garlon on grape cane

MCPA drift on walnut

POST - "membrane disruptors" (oils, acids, and organic herbicides)

- Drift damage limited to treated tissue (spots)
 - Looks like many of the PPO inhibitors and Gramoxone
 - Light dose could look like shot-hole or insect damage too
- None of the current products have soil activity at "reasonable" rates

Symptom variability

- Symptoms can vary widely among:
 - Species
 - Dose/rate
 - Time since exposure

Not every problem is an herbicide issue

Any ideas?

This turned out to be a natural gas leak!

Troubleshooting suspected herbicide injury

- A cell phone photo of a completely dead plant from 10 ft away is pretty hard to diagnose!
- Helpful info:
 - Descriptive symptoms and photos
 - Symptom timeline
 - Herbicides and other practices used at site
 - Surrounding crops and weed management
 - Symptoms on other plants?
 - Is there a pattern in the field? (rarely a "magic bullet")
 - Pull and freeze samples for lab analyses if necessary

Thanks

Littlejohn Farm