Strawberry Production With and Without fumigants

Steve Fennimore, Extension Specialist U.C. Davis, at Salinas, CA

UCCE Santa Barbara Nov. 20, 2013

Collaborators

- Tom Miller
- Krishna Subbarao
- Rachael Goodhue
- Oleg Daugovish
- Joji Muramoto
- Carol Shennan
- Frank Martin

- Nathan Dorn, Reiter Affiliated Cos.
- Ian Greene, Ramco Norcal
- Jenny Broome, DSA
- Clint Miller
- Myra Miller-Spahn
- Marty Madesko, DSA
- Jose Garcia

Financial support

- USDA NIFA Methyl Bromide Transitions
 - ***** 2010-51102-21648,
 - 2013 -51102-21524
- California Strawberry Commission
- Propane Education and Research Council

In-kind support from Reiter Affiliated Companies, Driscoll's, NorCal Ramco

Introduction

Role of steam – what it does & why needed?

- Results from 2012-13 work
- Business role for steam
- New steam generator technology
- New herbicides
- Summary

Why We Need Non-fumigant Alternatives

For soil disinfestation in:

Buffer-zones
Organic fields
Prepare for future

AUTOMATIC STEAM APPLICATION

McFadden Rd. Salinas, CA 9/27/13

Trial Setup

- Conducted near Salinas and Watsonville, CA during 2011-12 and 2012-13.
- Target temperature/dwell 70°C for 20 min.
- Treatments were replicated 4 times RCBD
- Economic analysis included material costs, labor and machine costs
- 2012-13 trials included ASD (anaerobic soil disinfestation).

Treatments Ranch 1	Dose
1. Steam - Clayton steam applicator	158°F for 20 min
2. Steam + mustard seed meal	158°F for 20 min + 1.5
	tons/A
3. ASD + rice bran	9 tons/A rice bran
4. Untreated Control	

Note: ASD was not successful in this test

Weed Densities & Hand Weeding Times 2012-13

Treatment	ent Watsonville-Ran			
	Weeds (no./Acre)	Time (hr. /Acre)		
Steam + mustard	6,071 b	21 b		
Steam	2,024 b	12 b		
ASD + rice	130,313 a	196 a		
Non-treated	101,175 a	167 a		

Mean separation using Fisher's Protected LSD P = 0.05

Pythium Control Ranch 1 2012

Albion: % Plants With Macrophomina p. at Season End

Seasonal Fruit Yields Ranch 1

2013 Ranch 1 Steam Trial, Albion

Albion Steam + Mustard (55,687 Lbs./A) Albion UTC (25,407 Lbs./A)

Seasonal Fruit Yields Ranches 1 & 2

49C129

123Q191

2010-2012 Findings

Steam controls soil pests such as *Verticillium dahliae*, *Macrophomina phaseolina*, *Pythium* spp. and weeds.
Strawberry yields in steam treated soils are comparable to yields in fumigated soils.

Samtani et al. 2012; Fennimore et al. 2013

Steam business model

- The assumption is that fumigants would continue to be used where possible.
- Steam would be used where fumigants cannot.
- Crop management is the same across fumigated and steamed blocks.

An 80 acre field impacted by sensitive sites

An 80 acre field impacted by sensitive sites

White = steam 7 acres Red = fumigate 65 acres

A business role for steam

- An 80 acre farm with 72 acres farmable
 65 acres can be fumigated, 7 acres cannot
 Fumigant cost \$1,900/A or \$123,500; steam costs \$5,000/A or \$35,000 for total treatment cost of \$158,500.
- Net returns above operating costs for 7 acres \$25,399 based on Albion yields

Daugovish et al. 2011.

New Steam Generation Technology Downhole steam generator – oil field technology.

No steam boiler
Does not require softened water
Small size

Advantages

Steam Generator input/output

Proof of Concept, steam works, just requires more energy output and smaller footprint

10 MM Btu/hr. PCI Steam Generator

Steam Costs

Estimated costs with the Clayton Steam prototype was \$5,400 to \$5,700 /A
Target rate is 8 hours/A
We are proposing to build a commercial-scale unit and cost estimates for operation are \$3,182 to \$3,832/A.

Summary - Steam

- Steam kills soil pathogens and weeds in field soils.
- Strawberry yields are similar in fumigated and steamed soils.
- Steam can be used as a component in a multi-tactic soil disinfestation program.

PROWL ^B H ₂ ^b herbicide				
FOR USE IN SELECTED CROPS Gee Table 1. Crop Uses Active Ingredient*: pendimethalin: N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine 38.7% Other Ingredients: 61.3% Total: 100.0% *1 gallon contains 3.8 pounds of pendimethalin formulated as an aqueous capsule suspension.				
EPA Reg. No. 241-418 EPA Est. No.				

Prowl H₂O

- u Can be applied pre-transplant
- Can be applied post-transplant but not if new leaves are present
- Can apply to row middles if applied at least 35 days before harvest
- Can apply no more than 3 pints/A per application and no more than 6 pints/A per season.

Prowl H₂O: rates by soil texture

Use Rates

Soil Texture	Broadcast Rate (pts/A)		
Coarse	1.5		
Medium	2.0 to 2.5		
Fine	2.5 to 3.0		

Watsonville 2001-02

Treat.	Rate	Timing	Bluegrass	Malva	Fruit
		/Transpt.	No/	/40ft ²	Trays/A
Prowl	2.1 pts	PRE	7.3 bc	1.8 bc	4840 a
Prowl	2.1 pts	POST	5.3 c	1.8 bc	3604 de
Control	0	NA	15.0 a	5.3 abc	4708 ab

Prowl H₂0 2.1 pints/A at Salinas

Prowl H₂O

- A new tool for strawberry weed management
- **u** Has a very flexible label
- **u** Very effective on annual grasses
- Very safe to strawberry applied pre-transplant
- **u** Reentry interval is 24 hours

Mode of Action / Use Pattern

- Active Ingredient = sulfentrazone
- Mode of Action = PPO Inhibitor
- **WSSA Group 14**
- **HRAC Group E**
- Primarily a soil applied herbicide
- Entry through root and shoot uptake

Zeus weed control at Salinas 2012-13

Zeus fruit yield at Salinas 2012-13

no significant differences

Zeus

- **u** Appears to be safe on strawberry
- Slightly less effective on burclover than Chateau
- Ju Zeus' niche might be for nutsedge control