HEALTHY EOOD SYSTEMS HEALTHY ENVIRONMENTS COMMUNITIES • HEALTHY CALIFORNIANS

University of California Agriculture and Natural Resources

Making a Difference for California

Managing thrips on lettuce, aphids on broccoli, and the new invasive pest Bagrada bug on cole crops

Surendra Dara

Strawberry and Vegetable Crops Advisor and Affiliated IPM Advisor **University of California Cooperative Extension** Santa Barbara and San Luis Obispo Counties

skdara@ucdavis.edu

@calstrawberries @calveggies Farawberriesvegetables

ucanr.org/strawberries-vegetables and ucanr.org/pestnews

Western flower thrips Frankliniella occidentalis

Lettuce-experimental design

Treatments

- 1. Untreated control
- 2. Assail 30 SC (acetamiprid) 4 oz + DyneAmic (NIS) 0.1% v/v
- 3. Radiant SC (spinetoram) 8 fl oz + Dyne Amic 0.25%

- 4. BotaniGard 22 WP (*Beauveria bassiana*) 2 lb + DyneAmic 0.125%
- 5. Torac 15 EC (tolfenpyrad) 21 fl oz + DyneAmic 0.25%
- 6. Torac 15EC 21 fl oz + Lannate SP 0.75 lb + DyneAmic 0.25%
- 7. NNI-1171 21 fl oz (new ai) + DyneAmic 0.25%
- **Spraying** 50* gal/acre at 70 psi with flat fan nozzle (*100 gpa for BotaniGard)
- **Plot size** 5 rows, 5.33' wide 10' long bed replicated 4 times

Planted on April 6, 2012

Treated on May 16 and 24 and June 6, 2012

Thrips populations during the study

Thrips after each spray application

Thrips before and after the spray applications

Percent change in thrips after treatment

Conclusion

- Thrips numbers were significantly lower in chemical treatments compared to untreated control.
- Tolfenpyrad alone and with methomyl provided good control.
- Microbial control also has a potential for thrips management.

Cabbage aphid and green peach aphid

Cabbage aphid, Brevicoryne brassicae

Broccoli-experimental design

Treatments

- Untreated control
 Assail 30 SC (acetamiprid) 4 oz

 + DyneAmic (NIS) 0.1% v/v

 BotaniGard 22 WP (*Beauveria bassiana*) 2 lb

 + DyneAmic 0.125%

 Torac 15 EC (tolfenpyrad) 21 fl oz

 + DyneAmic 0.25%
- 5. Pyrifluquinazon 3.2 fl oz + DyneAmic 0.25%
- 6. NNI-1171 21 fl oz (new ai) + DyneAmic 0.25%
- 7. Closer (sulfoxaflor) 1.5 fl oz + DyneAmic 0.25%
- 8. Closer 2.0 fl oz + DyneAmic 0.25%
- **Spraying** 50* gal/acre at 70 psi with flat fan nozzle (*100 gpa for BotaniGard)
- **Plot size** 5 rows, 5.33' wide 20' long bed replicated 4 times
- Planted on July 31, 2012
- Treated on September 5 and 25, 2012

Aphid populations during the study

Cabbage aphids

Green peach aphids

Aphids after each spray application

Aphids before and after spray applications

Percent change in aphids after treatment

Cabbage aphids before and after spray applications

Percent change in cabbage aphids after treatment

Green peach aphids before and after spray applications

Percent change in green peach aphids after treatment

Conclusions

- Cabbage and green peach aphids responded differently to treatments.
- Sulfoxaflor provided good control for both aphid species.
- *B. bassiana* provided good control of green peach aphids which was similar to some chemical treatments

Bagrada bug, Bagrada hilaris

Order: Hemiptera Family: Pentatomidae (Stink bugs)

Origin: Africa

Distribution: Asia and Europe and now in Arizona and California

Host plants: Mainly crucifers. Also infests malvaceous, leguminoseous, cucurbits, and graminaceous plants

London rocket, wild mustards, pepperweed, and others

Bagrada bug-Distribution

In Los Angeles County in 2008.

California: Kern, Imperial, Los Angeles, Monterey, Orange, Riverside, San Diego, Santa Barbara, San Luis Obispo, and Ventura Counties

Arizona: Yuma, La Paz, Maricopa, and Pinal Counties

New Mexico: Luna, Socorro, Valencia, and Santa Fe Counties

Nevada, Utah, and Texas

Bagrada bug-Host range

- **Brassicaceae:** Alyssum, arugula, broccoli, cabbage, cauliflower, collards, cress, kale, radish, rutabaga, turnips, etc.
- **Cucurbitaceae:** Cantaloupes and watermelons
- Graminaceae: Corn, millets, and wheat
- Leguminaceae: Various legumes
- Malvaceae: Cotton and okra
- Rosaeae: Strawberry
- Solanaceae: Potato

Eggs

- Barrel-shaped, laid singly or in small groups on plant surface or in soil
- Each female lays up to 95 eggs
- Whitish and turn orange with age
- Hatch in 3-6 days

Nymphs

- There are five nymphal instars
- Newly emerged nymphs are reddish orange and develop white and black markings with time
- Nymphal stage lasts for 2-3 weeks

Adults

- They are 1/5-1/3" long and 1/8-1/6" wide
- Black with orange and white markings
- Females are larger than males

Harlequin bug vs. Bagrada bug

Bagrada bug-Damage

Suck the plant juices with their needle-like mouthparts.

Stippling with necrotic spots, stunted growth, loss of apical dominance, formation of multiple heads and plant death.

Bagrada bug-Chemical control

2012 Small plot broccoli trials at Yuma Ag Center (John Palumbo and Ta-I Huang)

1 st application	Mean Number of Adults/20 Plants		
Treatment	1-Day After Treatment	3-Days After Treatment	5-Days After Treatment
Bifenthrin	0.0 b	0.5 d	2.3 b
Methomyl	1.8 b	2.5 bcd	4.0 ab
Chlorpyrifos	1.5 b	1.5 cd	3.0 ab
Clothianidin	0.5 b	4.0 ab	5.0 a
Dinotefuran	0.5 b	2.0 bcd	6.8 a
Acephate	0.5 b	3.5 abc	4.0 ab
Untreated control	7.3 a	5.8 a	6.8 a

Bagrada bug-Control

2012 Small plot broccoli trials at Yuma Ag Center (John Palumbo and Ta-I Huang)

2 nd application	Mean Number of Adults/20 Plants		
Treatment	1-Day After Treatment	3-Days After Treatment	5-Days After Treatment
Bifenthrin	0.0 b	1.3 bc	1.5 a
Methomyl	0.0 b	1.0 c	4.0 a
Chlorpyrifos	0.8 b	5.0 ab	4.0 a
Clothianidin	0.8 b	4.3 abc	5.5 a
Dinotefuran	0.3 b	1.3 bc	4.0 a
Acephate	0.8 b	1.5 bc	5.5 a
Untreated control	5.0 a	6.8 a	6.5 a

Active Ingredient	Product*	Application Rate
<i>Beauveria bassiana</i> strain GHA	Mycotrol O [®]	1 qrt/100 gal
<i>Metarhizium brunneum</i> strain F 52	Met 52 ®	1 qrt/100 gal
<i>Isaria fumosorosea</i> strain FE9901	NoFly ®	28 oz/100 gal
<i>Chromobacterium subtsugae</i> strain PRAA4-1	Grandevo®	3 lb/100 gal
Pyrethrins + potassium salts of fatty acids	Safer Yard & Garden Insect Killer®	Ready-to-use
Essential oil blend	Rid-Bugs [®]	60 ml/gal

*Verify label status before using any of these materials

B. hilaris on treated broccoli

Fungus emerging from surfacesterilized cadavers

Martin, Palumbo, Dara, and Natwick 2013

B. hilaris killed by *B. bassiana*

B. hilaris killed by M. brunneum

Martin, Palumbo, Dara, and Natwick 2013

Martin, Palumbo, Dara, and Natwick 2013

Bagrada bug-Cultural control

- Consider removing weed hosts
- Ensure transplants and other nursery materials are free of Bagrada bugs before planting
- Cultivate to destroy bugs and eggs in the soil; research on effectiveness has not been completed
- Exclusion: row covers may prevent damage but research on effectiveness has not been done
- Shred and disc crop immediately after harvest
- Rotate to a non-host crop

Bagrada bug-Monitoring

- Look for Bagrada bug the morning after transplanting when the sprinklers are off.
- For direct-seeded cole crops, look for bugs as soon as seedlings emerge.
- Continue monitoring weekly until the 5- to 6-leaf stage in direct seeded and transplanted crops.
- After the 5- to 6-leaf stage, laboratory and field research show most plants can tolerate Bagrada bug feeding without significant injury or yield loss.
 - Monitor mid-morning to late afternoon (10 a.m.-4 p.m.) when temperatures are near or above 86°F
 - Look for fresh feeding on cotyledons and young leaves; look for wilted seedlings
 - Look for bugs on plants underneath cotyledons and leaves, on the stem at the soil surface, in cracks in the soil, and under dirt clods
 - After insecticide applications look carefully on the soil for dead bugs (bugs blend in with the soil and also play dead when disturbed)

Bagrada bug-Thresholds

- Prevent adults from feeding on plant terminals and small cotyledons in order to establish a quality stand.
- One adult per ten-foot row of seedlings or transplants causes stand loss or unacceptable plant damage.
- For transplants, chemigate at the first sign of damage or when adults are found.
- For direct-seeded crops, chemigate when seedlings first emerge.
- When stands are established, apply an insecticide when bugs or fresh damage is readily observed.

Bagrada bug-Video

http://www.youtube.com/watch?v=gSj3AZoJIRM

Acknowledgments

Growers

Frank Costa San Ysidro Farms

Technicians

Thomas Crottogini Pedro Villela

Pesticide Industry Curt Engle Pedro Hernandez Jesse Richardson

Pest infestations