

NetMap

Desktop watersheds and analysis tools

Earth Systems Institute Seattle/Mt. Shasta/Fort Collins

A Collaborative Enterprise since 2007

-National Forests (WA, OR, NCA, AK, ID, MT) -Forest Service Research: PSW, PNW; RMRS

- -NOAA
- -BLM
- -EPA
- -Oregon Dept. Forestry
- -NGOs
- -Watershed Councils
- -Universities
- -Private timber

Applications

Climate change

Forestry: Timber harvest riparian management

Roads

Restoration

Post-fire (BAER) planning

A <u>desktop watershed</u> is a virtual environment where landforms and physical and biological processes are placed in context with spatial patterns of human activities and infrastructure

NetMap in ArcMap 10/10.1

~70 tools/100+ parameters -River Builder (create your own) -Basic Tools -Fluvial Morphology -Aquatic Habitat -Erosion -Riparian Management -Transportation/Energy

Current and Pending Coverage

USFS Region 1

NetMap

Over to Sam...

Spatially Explicit Riparian Management

A stepwise procedure for riparian management planning based on:

- fish habitat distribution,
- debris flow risk & upslope wood recruitment,
- streamside mortality wood recruitment
- thermal loading

Example area: Lake Creek, a tributary to the Alsea River

Step 1 – Define fish habitat distribution and quality

Define fish-bearing streams: e.g., Coho habitat (gradient < 8%; in red)

Step 2 – Define habitat distribution and quality by species

Lake creek is a moderate value Coho stream with Intrinsic Potential = 0.1 – 0.5

> Coho Intrinsic Potential 0 - 0.1 0.1-0.3 0.3-0.5 0.5-0.7

> > >0.7

ntial

0 0.5 1 2 Kilometers

Step 3 – Identify other species of concern (steelhead)

Lake creek is a better steelhead (than Coho) stream: IP values up to 0.8

> Steelhead Intrinsic Potential

>0.8

0	0	.5	1		2 Kilometers			lometers
1	1	і I.	1	1	1	Ĩ.	1	

Step 4 – Determine slope stability concerns, including landsliding

Certain areas in the Lake Creek basin are potentially unstable (in red)

Instability Potential High

0 0.35 0.7 1.4 Kilometers

Step 5 – Predict debris flow risk

Only a few tributaries in Lake Creek basin are very prone to debris flows

Debris flow potential

— Low

_ High

0 0.35 0.7 1.4 Kilometers

Step 6 – Predict debris flow contribution of large wood to streams

Identify likely sources of large wood to anadromous fish bearing streams from shallow failures & debris flows

0.35

0.7

1.4 Kilometers

Steps 7,8,9 – Evaluate effects of thinning on in-stream wood recruitment

- Reach scale
 - Per 100m reach or project
 - For selected piece sizes
 - Temporally and spatially explicit
 - Up to 3 stands on each bank
 - Plots of volume and number of pieces
- Watershed scale
 - Temporally and spatially explicit
 - CE analysis of management scenarios
 - Based on RSWM technology
 - Plots and maps available
- SnapShot scale
 - Spatially explicit
 - Uses GNN tree data

Thinning in uplands and in riparian areas

Reach Scale Wood Model (RSWM)

Mortality types include suppression, fire, insect, disease, & wind-throw.

Bells and Whistles:

- channel width,
- stand width,
- hillslope gradient,
- bank erosion,
- wood decay,
- taper equations,
- thinned trees that are tipped, and
- size of resulting wood pieces

Inputs: stand tables from forest growth models Outputs: 10 types of plots

Kozak, 1988; Bilby et al, 1999; Benda and Sias 2003; Sobota et al, 2006; Hibbs et al, 2007; and more.

RSWM Scenarios

- Left bank is always no action scenario (70 m)
- Right bank treatment scenarios (11) with and without a no action buffer
- Double entry thin, 70 TPA: 2010, 2040
- All other parameters held constant (bank erosion, channel width, gradient, taper equations)

Stand1	Stand2		
No action buffer (10 m)	No action (60 m)		
No action buffer	Thinned		
No action buffer	Thin & tip 5%		
No action buffer	Thin & tip 10%		
No action buffer	Thin & tip 15%		
No action buffer	Thin & tip 20%		
Thinned (70 m)			
Thin & tip 5%			
Thin & tip 10%			
Thin & tip 15%			
Thin & tip 20%			

Right bank scenarios

Cumulative wood volume using 2 bank scenarios, no buffer

Cumulative wood volume using 2 bank scenarios, 10 m buffer

Total volume of cumulative wood over time

(sorted by increasing volume)

	volutile
	(m ³ 100 m ⁻¹ reach)
	(percent change from
Total cumulative wood	reference)
Untreated/Double thin	156 (-42%)
Untreated/Double thin, tip 5%	232 (-14%)
Untreated/Buffer10_Double thin	243 (-10%)
Untreated/Untreated (reference condition)	271

Untreated/Double thin, tip 10%

Untreated/Untr

Untreated/Buffer10 Double thin tip 10%

Untreated/Buffer10 Double thin tip 15%

Untreated/Buffer10 Double thin tip 20%

Untreated/Double thin, tip 15%

324 (20%)

Volume

284 (5%)

288 (6%)

299(10%)

305 (13%)

Tree tipping from thinning operations combined with riparian buffers offer the highest volumes of wood loadings

Step 8. Watershed Scale Wood Model

Stand tables from forest growth models (FVS, Organon, Zelig) preprocessed in RSWM

Tabular data integrated with GIS: stream segments, stands, and DEM

> Generate output: plots and maps

Step 11 - Consider 'cumulative effects' of thinning at watershed scale (example, wood recruitment) – a key part of the analysis (not complete)

Parameters: variable age stands, variable thinning timing and location over 30 years, numerous stream segments, 100 years

Stand treatments – thin to 70 TPA from the bottom (47% of watershed thinned)

Planted Stands Buffer

Conifer> 80%

Hardwood>80%

Hardwood>50%Conifer<50%

Stand treatments – no action buffer & thin (39% of watershed thinned)

Conifer> 80%

Hardwood>50%Conifer<50%

Difference between wood volumes, thinned and no action buffers, year 2055.

Spatial distributed sources of wood volume, year 2055

Wood volume by time (m³ 100m⁻¹ yr⁻¹) Thinned 2015

No action buffer

Thinned buffer

1995: high initial mortality – result of FVS model parameters 2015: thinned

2025 – 2085: no action buffer produces more wood 2095+ : thinned buffer scenario produces more wood Only one stand had data to 2295, others ended at 2195, hence the low values after 2195

Wood volume by piece size and time (m³ 100m⁻¹ yr⁻¹), thinned 2015

No action buffer

Thinned buffer

Thinned buffers resulted in a 15% decrease in wood volume

Percent changes in wood volume by piece size (cm) from no action to thinned buffer

Small reduction in the smallest volumes of wood in storage w/ thinning, increases in larger volumes of stored wood w/thinning

Compare the cumulative distributions of total wood storage, 1000 stream segments over 100 years – not available.

Step 9. SnapShot wood model (coming summer 2013)

Ohrmann and Gregory, 2002; Benda and Sias, 2003; Parish et al, 2010

SnapShot wood model – data availability (coming summer 2013)

Drainage wings

Stand Height (m)

Snag TPH DBH >= 25 cm

Applications for land management

- Multi-scale: reach or project scale v. watershed scale management and analysis;
- Enables spatially variable approach and analysis;
- Designs for riparian treatments thinning, buffers, habitat;
- Designs for mitigation,
 enhancement, tree tipping

Step 10. Modeling stream thermal loading for varying forest conditions

Examine the effect of thinning on thermal loading

Evaluate buffer designs

NetMap: Thermal Tool Interface

🚽 NetMap: Thermal loading tool

The thermal loading tool calculates incoming solar radiation for July 20th which is the hottest day of the year on average. Solar radiation is calculated for bare earth and for forest conditions in riparian and outer stands, on each stream bank; the difference between the two conditions is also calculated. Solar radiation is

_ D X

attenuated by forest stand conditions (average tree height, stand width, and vegetation density) using Beer's Law. Channel aspect is used to determine the solar direction relative to stream banks. Hillslope gradients are assumed to be a constant 10%. Stream left and right banks are determined looking downstream. After the calculations are complete, maps may be displayed to show solar radiation in Watts / m2. Note: Future development of this tool will enable the use of spatially explicit hillslope gradients in calculations.

1. Average tree height (m) Left Right 48 48 2. Selected reaches only	3. Riparian Buffer Forest Left Right Width, m 200 200 200 200 200 200 200 200 200 2	4. Outer Forest Set density to 0 to ignore. Buffer Width, m Veg Density (0 to 1) 0.00 ♀ 0.00 ♀							
Run Help WARNING: This tool, when run at the watershed scale, may require several hours processing time. Time required will depend on the number of reaches selected. A few reaches may take only a few seconds but the time involved increases linearly with increasing number of stream segments.									
 Total radiation, vegetated conditions Fish-bearing reaches only 	D Total radiation,	Difference between bare earth and vegetated Display Results							
Utilities									
Save current input values as default	Save reach selection								
Reset all results to 0	Clear reach selection	Class							
Display All Reaches	Load reach selection	Gose							

Thermal tool sensitivity analysis: difference between fully vegetated and bare earth

No thermal effect with 100 ft buffers w/thin beyond

Thermal load (watts/m²) 22.47 - 269.64 269.64 - 573.71 573.71 - 1196.42 1196.42 - 2295.91 2295.91 - 4112.63

0 0.4 0.8 1.6 Kilometers

NetMap

Back to Lee ...

Step 12 - Assemble the pieces and design forest management and watershed restoration (one hypothetical example)

Debris flow delivery of large wood to fish habitat (incl. coho/steelhead), thin in some swales or/and upper mainstem, no buffer - target: increase large wood to fish habitat via landslides/debris flows Add road restoration activities to reduce mass wasting & surface erosion

Spatially variable fire frequency based on landscape position

Step 13: (optional): Run forest fire simulation models (with topographic dependency on fire frequency) to predict spatially heterogeneous nature of forest ages, including in riparian zones

Figure 11. Probability distributions of riparian forest ages, including for landslide sites. The average proportion of channel length with forest stands of a particular age, using 25-year bins up to 200 years (forests greater than 200 years not shown) was tabulated for zero-order (i.e., landslide sites) through fourth order. These predicted histograms indicate, that on average, the proportion of the channel length containing trees less than 100 years old varies from 30% (zero order), 24% (first-order), to 15% (fourth order). The decreasing amount of young trees with increasing stream size is a consequence of the field estimated susceptibility of fires. Fire frequency was the highest on ridges and low-order channels (~175 yrs) and the lowest (~400 yrs) on lower gradient and wide valley floors.

Results from southwest Washington (GTR-101-CD, 2002)

NetMap

Community Digital Watersheds & Shared Analysis Tools

www.netmaptools.org

Earth Systems Institute www.earthsystems.net Seattle/Mt. Shasta/Fort Collins