

Creating Functional Water Environments

Riparian Ecology & Functions in Forested Landscapes

May 1, 2013

Mike Liquori Principal, Sound Watershed

www.soundwatershed.com

- •~101 M acres
- •16.6 M ac of public and privately owned commercial timberland
- 9.3 M ac public ownerships
- 7.3 M ac privatelyowned timberland
- 5.4 M ac private lands zoned for timber production

Private and Public Land Ownership within the Coastal Anadromy Zone

> 85-90% of remaining CCC coho salmon exist on private forestlands

• The scientific basis for defining buffer widths in fish-bearing streams was source distance relationships

Policy Drivers

90% of the waterbodies in California's North Coast Region are listed as "impaired" 2012 Ponderosa Fire Battle Creek Digger Creek Riparian Zone

Photo: Mark Lathrop, SPI

2007 Angora Fire

"Dense stands of trees in the Angora SEZ likely contributed to the rapid [fire] spread upslope to Angora Ridge..."

Technical Basis for ASP Rules

Mike Liquori

Doug Martin

Robert Coats

Lee Benda

David Ganz

Sound Watershed Consulting Creating Functional Water Environments

Scientific Literature Review of Forest Management Effects on Riparian Functions for Anadromous Salmonids

> Chapter 1 INTRODUCTION

> > for

The California State Board of Forestry and Fire Protection

September 2008

Hydrology Geomorphology River Ecology Restoration Design Sustainable Forestry Integrated Watershed Management

The 2009 Anadromous Salmonid Protection (ASP) Rules

Creating Functional Water Environments

Riparian Functions

Functions

Creating Functional Water Environments

Biotic & Nutrient Exchange

 Distribution of aquatic organisms change longitudinally

Driven by process changes

 Distribution of aquatic organisms change longitudinally

- Driven by process changes
- And source materials

• Riparian leaf litter is an important food source

Nutrient Quality

Highest Value

Moderate

Nutrient Quality

- Tradeoffs between nutrient exchange and other functions
 - Heat regulation
 - Water response to flooding
 - Wood recruitment potential

- No-cut buffers may forego opportunities to:
 - increase fish growth rate and biomass
 - manage other functions

A 100 foot wide no-cut buffer on both sides of a stream provides conditions similar to a "no harvest" level

Creating Functional Water Environments

Heat Exchange Functions

- Riparian shade helps to control heat input to streams
- Other factors important too

Factors Affecting Temperature

Table 2. Stream structures that influence insulating and buffering characteristics

Component and		
characteristic	Determined by	Ecological influence over
Channel		
Slope	catchment topography	flow rate
Substrate	flow regime, sediment sources, stream power	resistance to groundwater flux; channel roughness and therefore flow rate and thermal stratification
Width	flow regime, sediment sources, stream power, bank stability	surface area for convective heat exchange
Streambed topography	flow regime, sediment sources, stream power, bank stability, large roughness elements (e.g., large woody debris)	gradients that drive hyporheic flux
Pattern	flow regime, sediment sources, stream power, bank stability, large roughness elements, valley shape	gradients that drive hyporheic flux; potential shade from riparian vegetation
Riparian zone		
Vegetation	flow regime, vegetation height, density, growth form, rooting pattern	shade to reduce solar radiation; windspeed, advective heat transfer, conductive heat transfer; bank stability
Width	(same as channel pattern)	potential for hyporheic flux; potential for shade
Alluvial aquifer		1
Sediment particle size	(same as channel substrate)	potential for hyporheic flux
Sediment particle sorting	(same as channel substrate)	diversity of subsurface temperature patterns by determining stratigraphy; extent of hyporheic flux
Aquifer depth	(same as channel pattern)	extent of hyporheic flux

Poole & Berman 2001

- The relative importance and sensitivity of riparian vegetation to influence stream temperature varies by:
 - Geographic province
 - At least 11 site specific factors

• Stream temperature targets can be helpful in managing to desired shade conditions

- No single, fixed-width buffer or canopy closure prescription can regulate heat objectives for salmon in all cases.
- Effective shading can be provided by:
 - Lateral: buffer widths ranging from 30 to 100 ft
 - **Longitudinal**: generally within 500 to 650 ft upstream

Riparian Buffer Effects on Microclimate

• Timber harvest in or adjacent to riparian areas can influence microclimate,

HOWEVER

 microclimate changes have not been demonstrated to translate to changes in water temperature.

• Shade conditions inversely influence biotic and nutrient exchange functions.

• Similarly, the canopy that provides shade also influences:

- Water exchange functions
- Wood exchange functions

Creating Functional Water Environments

Water Exchange Functions

• Management affects the riparian canopy

- canopy interception
- evapotranspiration

- Forest management activities in riparian areas might affect stream functions
 - effect is likely to be small
 - highly variable
 - strongly influenced by the watershed context
 - impacts are mixed

- There is little direct evidence of riparian effects:
 - studied for entire watersheds
 - riparian zones alone have not been studied

- The most sensitive hydrologic areas may be steep, zero-order basins (hollows)
 - This was not a focus of this review

- Soil compaction in riparian areas can negatively affect hydrologic processes.
 - Suggests limits for heavy equipment near streams

- Hyporheic flows are important ecologically
 - forest management effects are unclear

Creating Functional Water Environments

Wood Exchange Functions

• Wood functions vary by stream type and geomorphic context

Туре	Proportion of Supply	Source Distance
Bank Erosion	40-60%	< 30 ft
Landslides	~30%	100-200 ft
Treefall (mortality)	10 200/	< 100 ft
Treefall (windthrow)	~10-30 %	Up to 130 ft

- The major factors that are reported to influence wood recruitment conditions include:
 - Existing Stand Density, Composition And Structure
 - Stream Type, Order and Watershed Context
 - Vegetation Type and Soil/ Site Index
 - Regional Context
 - Disturbance Context

Instream wood can move downstream through:

– Flood: in larger streams

Debris-flow: in steep, loworder streams

- Wood recruitment potential depends upon:
 - Existing stand conditions
 - Successional pathway
 - Disturbance Regime

- Forest management appears to influence natural disturbance regimes by affecting
 - How often disturbances occur
 - How large the disturbances are
 - Which type of disturbances are likely

- Active forest management can manipulate riparian stand structure in ways that:
 - a) affect the growth and mortality dynamics for the stand and
 - b) influence the types, qualities and risks of disturbances
- and thus influence wood functions

Creating Functional Water Environments

Sediment Exchange Functions

- Sediment sources from forest management include:
 - surface erosion processes (rills and sheetwash)
 - skid trails
 - yarding ruts
 - gullies
 - soil piping
 - roads
 - fire
 - mass wasting processes
 - bank erosion
 - windthrow
 - legacy forest management practices

- Sediment Best Management Practices (BMPs) typically address sediment in three general ways:
 - Source controls
 - Runoff Controls
 - Treatment Controls

• Riparian buffers are mostly effective at limiting sediment delivery

• Riparian buffers are mostly effective at limiting sediment delivery

• In the absence of buffers, ground disturbances that are near streams have the potential to deliver sediment

 Selective forest management within buffers does not appear to substantially increase sediment production or delivery

• The extent that riparian buffers along headwater streams are necessary to prevent sediment delivery is not clear from the reviewed literature.

• Despite the lack of evidence for direct sediment delivery, instream sediment yields tend to increase following logging

- Sources of such sediment are not clear

• Source distance relationships for sediment also appear to vary with the dominant processes and site conditions

- Riparian sediment management objectives include mitigating for:
 - Harvest-Related Sediment
 - Hydrologic Link to Sediment Delivery
 - Road Sediment
 - Mass Wasting Impacts

Functions

