University of California Cooperative Extension Shasta/Tehama Cattlemen's Association Winter Animal Health Meeting cetehma.ucdavis.edu or ceshasta.ucdavis.edu

Thank you to our sponsors!

Merial, Zoetis

Shasta Livestock Auction Yard

Shasta Veterinary Clinic

Shasta Farm & Equipment

Hawes Ranch and Farm

Northern CA Farm Credit

Interpreting Tissue and Soil Analytical Data for Irrigated Pasture

Josh Davy and Allan Fulton Livestock and Range Farm Advisor

Soil sampling

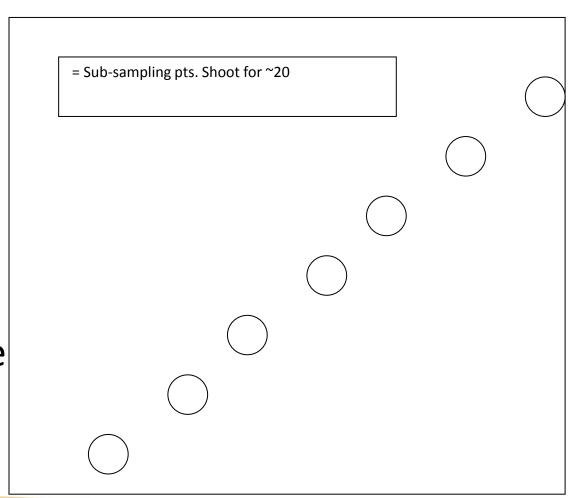
- Keep this based on pasture and maybe range
 - This presentation is not valid for...
 - Orchard crops
 - Corn
 - Small grains
 - Etc.

Why

- Better measurement tools are developed for other crops
 - Example...Orchard crops use leaf analysis
- Pasture guidelines are based on many years of fertilizer research
- This research correlates measured pasture responses with soil test results

Keep it simple

- Pastures aren't that complicated
 - Measure the major nutrients N-P-K-S
 - Nitrogen
 - Phosphorus
 - Potassium
 - Sulfur
 - Plus...
 - pH



Generally...

- Soil samples are good for P, K and pH
- <u>Tissue samples</u> are best for <u>N and S</u>

Soil test first - <6"

- One bag per per sample
- Combine the sub samples
- 1-sample
 per representative
 area

Phosphorus

- Soil test
- Major nutrient for clover growth
 - Usually limiting in some way
 - Not mobile
 - Don't sample too deep
 - Availability influenced by soil chemical properties and reactions
 - pH dependent
 - Results can last 3+ years!

Phosphorus

- Phosphorus is expensive!
- It adds very little to established plants
- Excessive does not equal more production
- Moral is....this nutrient pays for the soil test

pH affects which test to look at

SOIL ANALYSIS REPORT

	Phosphorus		Potassium	Magnesium	Calcium	Sodium	p	Н
(P1 Weak Bray) **** * ppm	NaHCO₃-P (OlsenMethod) **** * ppm	K ***** * ppm	Mg *** * ppm	Ca *** * ppm	Na *** * ppm	Soil pH	
	2VL	9VL	80L	333H	1819M	15VL	6.3	
	2VL	33M	67L	480VH	1736M	16VL	6.3	
	4VL	12**	91M	271H	1082L	15VL	6.1	

Phosphorus critical levels

Nutrient	If soil test is*	Suggested fertilizer rate	
Phosphorus (HCO3 extractable)	< 5 ppm 5–10 ppm 10–20 ppm > 20 ppm	100 lb P205/acre 50 lb P205/acre 25 lb P205/acre none	
Potassium (ammonium acetate extractable)	< 40 ppm 40–60 ppm > 60 ppm	200 lb K20/acre 100 lb K20/acre 0–50 lb K20/acre	
Zinc (DTPA extractable)	< 0.5 ppm (soil pH < 7.0) < 0.5 ppm (soil pH > 7.0)	5 lb Zn as ZnSO4/acre 10 lb Zn as ZnSO4/acre	

If you use the bray test multiply the results by 0.6 to evaluate the correction in the chart above

Potassium

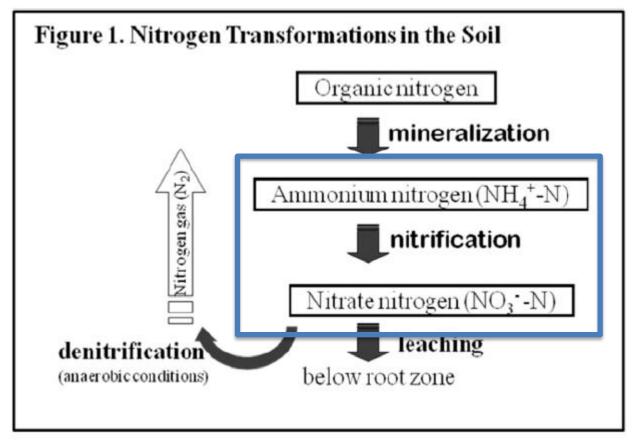
- Generally not deficient on the western side
 - But...can be on the east side of the valley
 - But...can also be following sorghums
 - Corn
 - Sudan
- Pasture requirements are very low compared to other crops

Potassium critical levels

Nutrient	If soil test is*	Suggested fertilizer rate		
Phosphorus (HCO3 extractable)	< 5 ppm 5–10 ppm 10–20 ppm > 20 ppm	100 lb P205/acre 50 lb P205/acre 25 lb P205/acre none		
Potassium (ammonium acetate extractable)	< 40 ppm 40–60 ppm > 60 ppm	200 lb K20/acre 100 lb K20/acre 0–50 lb K20/acre		
Zinc (DTPA extractable)	< 0.5 ppm (soil pH < 7.0) < 0.5 ppm (soil pH > 7.0)	5 lb Zn as ZnSO4/acre 10 lb Zn as ZnSO4/acre		

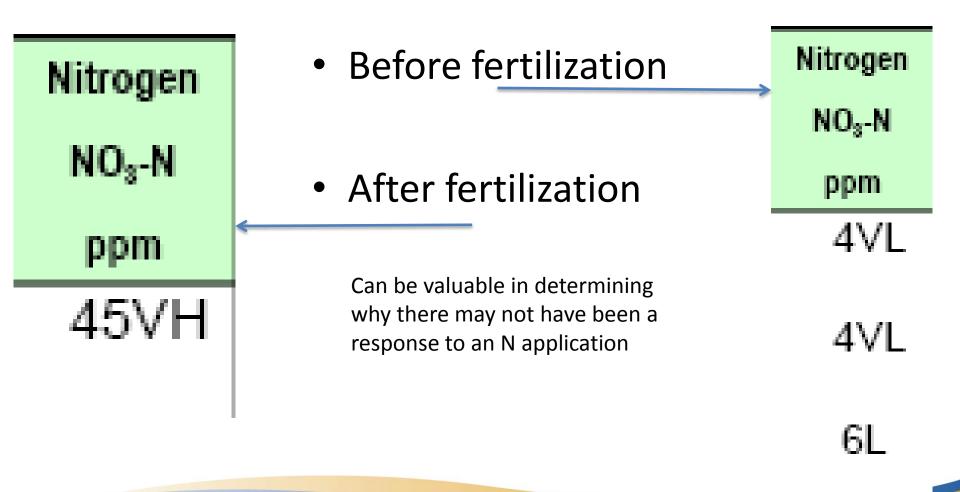
^{*} Source: Soil and Plant Tissue Testing in California (UC ANR Bulletin 1879).

The clover theory


- Is the clover inoculated and fixing nitrogen?
- Pasture study 2012
 - 50 lbs/acre of N with 21-0-0
 - Watered in after fertilization
 - No response

Why?????

40% clover cover and had nodules



Why plant test for nitrogen?

Source: Carol Frate – Agronomy Farm Advisor

Why would we soil test N?

Nitrogen plant test

Plant and growth stage	Part of plant	Nutrient	Nutrient range*		
			Deficient	Critical	Adequate
Grasses	l fescue, top 4–6 leaves, hardgrass, no stems	N %	< 2.0	2.0 – 2.8	> 2.8
(tall fescue, orchardgrass, and others)		K % S %	< 1.5 < 0.10	0.10 - 0.24 1.5 - 2.5 0.10 - 0.15	> 0.24 > 2.5 [†] > 0.15 [‡]

Our nonresponsive pasture sampled at 3.22

Sulfur plant test

- Sulfur is necessary in low amounts
- We are frequently low
 - More than is usually documented
- It is often easily corrected because a common nitrogen fertilizer is 21-0-0-24
- Sulfur is mobile
- Soil test doesn't account for outside sources

Sulfur plant test

DI	Part of plant	Nutrient	Nutrient range*		
Plant and growth stage			Deficient	Critical	Adequate
Grasses (tall fescue, orchardgrass,	top 4–6 leaves, no stems	N % P % K %	< 2.0 < 0.18	2.0 – 2.8 0.18 – 0.24	> 2.8 > 0.24
and others)	von extra	S %	< 0.10	0.10 - 0.15	> 0.15 [‡]

Conclusion

- If your only going to do one test
 - Make it the soil test
- Check for nodules on the clover
 - If none reseed with inoculated clover
- Soil tests cost ~\$12...cheaper than fertilizer
- Don't believe the results?
 - Check them in a small area