Management of Invasive Species in Landscapes

T.D. Paine, Department of Entomology, UC Riverside

Specialist Insects That Impact Specific Plants

- Established pests can be managed with conventional IPM
- New introductions may require different approaches, depending on type of damage and extent of the infestation

Invasive Threats - Pine

Tomicus ligniperda:

 Pine Shoot Beetle –
 Introduced from
 Europe into North
 American Great
 Lakes region, but not in California, yet.

Invasive Threats - Pine

- Sirex noctilio:

 Woodwasp in North
 America, but not in
 California
- Introduces a pathogenic fungus into trees
- Tree dies and becomes suitable for larval development

Pine

- Maintain tree vigor
- Some success with barrier sprays of insecticides
- May be some of the new systemic materials that can be effective if will contact the insect
- New technologies being tested for application of anti-aggregation pheromones

Invasive Threats - Elm*

Banded Elm Bark Beetle Scolytus schevyrewi

Eucalyptus

Beetles

Snout Weevil – *Gonipterus* scutellatus

Leaf Beetles – *Trachymela* sloanei and *Chrysoptharta* m-fuscum

Longhorned Borers – Phoracantha semipunctata and Phoracantha recurva

Biological Control

Eucalyptus

Psyllids

Glycaspis brimblecombei, redgum lerp psyllid Eucalyptolyma maidenii spotted gum lerp psyllid

Cryptoneossa triangula lemon gum psyllid

Biological Control

New Pests and Old Problems

- New vector aggravate the problem
- Glassy-winged
 Sharpshooter

New Pests and Old Problems

New vector – create new problem Oleander Leaf Scorch

Olive Leaf Scorch Liquidamber

New Pests and New Problems

New vector – create new problem Oleander Leaf Scorch Olive Leaf Scorch Liquidamber

New Problems in Olive
Olive Psyllid: Euphyllura olivina
San Diego and Orange Counties
Olive Fruit Fly

- Josephiella
- Tea* shot hole borer
- Diaprepes root weevil
- Myoporum thrips
- Tipu psyllid
- Asian citrus psyllid
- Asian Wooly Hackberry Aphid
- Goldspotted oak borer
- Walnut twig beetle
- Spotted wing Drosophila
- Blue gum gall wasp

- Josephiella
- Tea* shot hole borer
- Diaprepes root weevil
- Myoporum thrips
- Tipu psyllid
- Asian citrus psyllid
- Asian Wooly Hackberry Aphid
- Goldspotted oak borer
- Walnut twig beetle
- Spotted wing Drosophila
- Blue gum gall wasp

Beneath the Bark

Strategies to Limit Movement and Tactics for Management

- Routes of facilitated movement – identification and reduction
- Previous efforts with similar species – where are the successes

Trapping

 Assess population activity and relative abundance

• Trap design – purple prism, multiple funnel, yellow card

Attractive lures?

Cultural Control and Sanitation

- Tree removal
- Treatment of slash and debris
- Chipping or grinding
- Solarization and composting
- Firewood movement

Mark Adams, Downey Trees, Bugwood.org

Cultural Control and Sanitation

- Tree removal
- Treatment of slash and debris
- Chipping or grinding
- Solarization and composting
- Firewood movement

Joseph O'Brien, USDA Forest Service, Bugwood.org

Chemical Control

- Insecticides and bark beetles – getting the material to the target
- Systemic insecticides new materials and delivery, injections or drenches
- Contact insecticides barrier sprays
- Value of trees and cost of treatments

Biological Control

- Native natural enemies shifting to a polyphagous invasive species
- Potential for introduced natural enemies
- Biological control of fungal associates
- Entomopathogenic fungi

Research and Implementation

- New species and new environment
- Start with the experience of others

 related species or different environments
- Adapting methods to the California conditions and California stakeholders

- Josephiella
- Tea* shot hole borer
- Diaprepes root weevil
- Myoporum thrips
- Tipu psyllid
- Asian citrus psyllid
- Asian Wooly Hackberry Aphid
- Goldspotted oak borer
- Walnut twig beetle
- Spotted wing Drosophila
- Blue gum gall wasp

cisr.ucr.edu

- Josephiella
- Tea* shot hole borer
- Diaprepes root weevil
- Myoporum thrips
- Tipu psyllid
- Asian citrus psyllid
- Asian Wooly Hackberry Aphid
- Goldspotted oak borer
- Walnut twig beetle
- Spotted wing Drosophila
- Blue gum gall wasp

- Josephiella
- Tea* shot hole borer
- Diaprepes root weevil
- Myoporum thrips
- Tipu psyllid
- Asian citrus psyllid
- Asian Wooly Hackberry Aphid
- Goldspotted oak borer
 Walnut twig beetle
- Spotted wing Drosophila
- Blue gum gall wasp

Gevork Arakelia

- Josephiella
- Tea* shot hole borer
- Diaprepes root weevil
- Myoporum thrips
- Tipu psyllid
- Asian citrus psyllid
- Asian Wooly Hackberry Aphid
- Goldspotted oak borer
- Walnut twig beetle
- Spotted wing Drosophila
- Blue gum gall wasp

cisr.ucr.edu

- Josephiella
- Tea* shot hole borer
- Diaprepes root weevil
- Myoporum thrips
- Tipu psyllid
- Asian citrus psyllid
- Asian Wooly Hackberry **Aphid**
- Goldspotted oak borer
- Walnut twig beetle
- Spotted wing Drosophila
- Blue gum gall wasp

cisr.ucr.edu

- Josephiella
- Tea* shot hole borer
- Diaprepes root weevil
- Myoporum thrips
- Tipu psyllid
- Asian citrus psyllid
- Asian Wooly Hackberry Aphid
- Goldspotted oak borer
- Walnut twig beetle
- Spotted wing Drosophila
- Blue gum gall wasp

cisr.ucr.edu

- Josephiella
- Tea* shot hole borer
- Diaprepes root weevil
- Myoporum thrips
- Tipu psyllid
- Asian citrus psyllid
- Asian Wooly Hackberry Aphid
- Goldspotted oak borer
- Walnut twig beetle
- Spotted wing Drosophila
- Blue gum gall wasp

UC IPM

- Josephiella
- Tea* shot hole borer
- Diaprepes root weevil
- Myoporum thrips
- Tipu psyllid
- Asian citrus psyllid
- Asian Wooly Hackberry Aphid
- Goldspotted oak borer
- Walnut twig beetle
- Spotted wing Drosophila
- Blue gum gall wasp

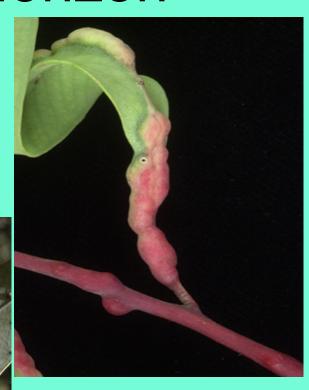
cisr.ucr.edu

- Josephiella
- Tea* shot hole borer
- Diaprepes root weevil
- Myoporum thrips
- Tipu psyllid
- Asian citrus psyllid
- Asian Wooly Hackberry Aphid
- Goldspotted oak borer
- Walnut twig beetle
- Spotted wing Drosophila
- Blue gum gall wasp

- Erythrina gall wasp
- Redbay ambrosia beetle
- Eucalyptus gall wasps
- Wood borers

hawaii.gov/hdoa/pi/ppc/

- Erythrina gall wasp
- Redbay ambrosia beetle
- Eucalyptus gall wasps
- Wood borers



- Erythrina gall wasp
- Redbay ambrosia beetle

Eucalyptus gall wasps

Wood borers

- Erythrina gall wasp
- Redbay ambrosia beetle
- Eucalyptus gall wasps
- Wood borers

Impact on Pest Management

- Why are invasive species often such damaging pests?
- Escape from natural controls – environmental and biological

Impact on Pest Management

- Damage to species or systems that were previously pest free
- Confound an existing IPM program
- Resolve conflicts between short term protection and long term management

Observe and Report

- Constant introduction of new pests
- Need to know when they arrive and where they are found as soon as possible – plea for information
- Research can be initiated to provide management options

