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10. CONDITIONAL SIMULATION OF

UNSATURATED SOLUTE TRANSPORT

10.1 Introduction

The stochastic evaluation of solute transport is of interest where not only the expected

behavior of contaminant movement but also the uncertainty associated with the mean

concentration prediction must be evaluated.  To obtain the statistical parameters of the input

random field variables (RFVs, see section 2.5.1) Ks and " in (4-8), measurements must be taken

to determine Ks and " at the site  that needs to be evaluated  (unless these data are available from

similar or nearby sites).  In many cases, measurements are also available that are related to those

two parameters, although they represent a different physical quantity, for example soil

tensiometer data or concentration measurements.  Data of physical variables that are different

from, but related to the constitutive parameters of unsaturated flow are often referred to as

"indirect" information.  The unconditional stochastic method presented in the previous two

chapters ignores any available indirect data and considers only the statistical properties of the

"direct" data.  The approach is satisfactory in applications where either the lateral extent of the

contamination source  or the travel distance of interest is very large with respect to the

correlation scale of the soil and if the soil is of  only mild heterogeneity.   In such cases, the

actual solute plume is "ergodic" (see chapter 2) i.e., the stochastic mean concentration plume

accurately predicts the actual plume and the concentration variance is zero.  But for a point

source or very localized contamination, the travel distance required for the plume to reach

ergodicity may be exceedingly large.   Dagan (1986) suggested that the ergodicity assumption

is valid only after the plume has been displaced several hundred correlation scales.  In the

unsaturated zone, this may correspond to several tens of meters (see field studies referenced in

the introduction to chapter 8).  If soil heterogeneity is found on a number of distinct scales of

increasing order, ergodicity may not be achieved at all, even in the deep unsaturated zones
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encountered in semi-arid and arid environments (see chapter 9).

The non-ergodic mean plume concentration has a meaning much different from the

ergodic mean plume concentration.  It merely is a mass conservative, best estimate of the local,

time dependent concentration probability.  Unlike the pdf of other RFVs, the concentration pdf

is difficult to determine due to the non-stationarity in space and time.  Hence, the significance

of the first two unconditional concentration moments is questionable if the variability is very

large.  To condition the stochastic evaluation of solute transport on all of the available

information - including the deterministic value of single measurement data - is therefore a

desirable approach not only to reduce the uncertainty of the concentration prediction but also

to fully reflect the information content of the available field measurements.

Conditional stochastic analysis has been applied to a number of groundwater problems.

Dagan (1982, 1984) derived analytical perturbation expressions for the conditional moments of

the saturated hydraulic conductivity (input variable), the conditional head, and the spatial plume

moments (output variables) in a Bayesian framework.  The work accounted for local

measurements of the hydraulic conductivity, of the head, and of the groundwater pore velocity.

Delhomme (1979) used the  geostatistical method to  generate conditional random  input fields

of the saturated hydraulic conductivity (chapter 3; Journel, 1974).  By generating random fields

of Ks and solving the saturated flow equation numerically, he evaluated the conditional head

moments through a Monte Carlo simulation.  A similar approach was taken by Smith and

Schwartz (1981) who not only analyzed the conditional head,  but also the conditional solute

arrival time to  demonstrate the principal  effect of conditioning.   Binsariti (1980)  and Clifton

and Neuman (1982) used transmissivity and water table measurements to condition the

transmissivity fields.  They applied the statistical inverse method introduced by Neuman and

Yakowitz (1978) to condition the hydraulic conductivity data on measurements of head.  Clifton

and Neuman (1982) reported a large decrease in prediction uncertainty with respect to the head

moments, when head measurements are included in the conditional approach.  The first effort

to condition hydraulic conductivity and the velocity field on concentration data was made by
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Graham and McLaughlin (1989).  They presented a first order analytical stochastic solution

based on spectral perturbation analysis and Kalman filtering.   This work has to date been the

only rigorous approach that allows for conditioning with concentration data.   Indirect and direct

information is used in the Lagrangian conditional transport analysis by Rubin (1991a), who uses

a cokriging approach to  obtain the conditional moments of the velocity from measurements of

the saturated hydraulic conductivity and/or the head.  The covariances and cross-covariances

necessary for the cokriging are derived from a linear first order analysis based on Dagan's work

(1984).   Using the conditional velocity fields,  the conditional spatial moments (center of mass

and moment of inertia) of the  contamination plume are evaluated in a Lagrangian framework

by particle tracking.  Zhang and Neuman (1994a,b,c,d) develop a new approach to obtain

conditional concentration moments, conditional spatial moments of the mean concentration, and

conditional solute flux moments based on the Eulerian-Lagrangian transport theory by Neuman

(1993).  Transmissivity and hydraulic head data are used in their work to condition the

concentration moments.

To date,  no attempt has been made to also analyze unsaturated transport with

conditional stochastic methods.   Recently, an exact formalism  to predict the conditional

moments of transient unsaturated flow (but not transport) in heterogeneous media has been

suggested (Neuman and Loeven, 1994).  In principle, all of the above approaches lend

themselves for an analysis of the conditional plume and concentration moments under

unsaturated conditions.  The main difficulty encountered in the numerical (Monte Carlo)

approach on one hand is the prohibitive amount of computation time needed to obtain just one

steady-state velocity field from the conditional random input fields of Ks and ".  The difficulty

of the analytical approaches on the other hand is the derivation of covariance and cross-

covariance functions necessary to obtain the conditional velocity moments.

The work presented  in the previous chapters  has overcome both limitations:  An

efficient numerical approach to compute steady-state unsaturated velocity fields, given a

heterogeneous realization of Ks and ", has been introduced (chapter 7; Harter and Yeh, 1993).
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This allows the efficient implementation  of Monte Carlo  simulations similar  to the work by

Smith and Schwartz (1981a,b).  The stochastic moments of the unsaturated flow variables

f=logKs, a=log" (log: natural logarithm), and soil water tension (head) h have also been derived

(chapter 4;  Yeh et al., 1985a,b).  With these theoretical moments, Rubin's (1991a) analysis of

conditional plume moments can easily be extended to unsaturated flow.  His semi-analytical

approach, however, is limited to small perturbations.  In this chapter the (nonlinear) numerical

Monte Carlo technique is applied to derive various conditional stochastic transport parameters

without having to linearize either the flow or the transport equation.  Linearization is only used

to generate conditional input random fields f and a given data of either f, a, or h.  For the

conditioning, a geostatistical inverse method called cokriging is applied (Myers, 1982;  Kitanidis

and Vomvoris, 1983).

Conditional simulation of unsaturated transport distinguishes itself from the conditional

simulation of saturated transport not so much in the principle of the approach as in the inter-

dependencies between input and output RFVs.  The same measurement data play a different role

depending on whether they are applied to saturated or unsaturated flow.  In unsaturated flow two

independent parameters (or more - depending on the choice of the constitutive relationship)

define the actual local hydraulic conductivity.  The unsaturated flow problem is inherently

nonlinear i.e., head and conductivity are interdependent unlike in the saturated case, where the

conductivity is independent of the head.  It is therefore expected that the data measured in the

field and used to condition the stochastic analysis have a relevant information content that is

distinctly different from the saturated case.  Much of the usefulness of one type of measurement

will depend on the availability of other types of measurements.  Measuring, for example, either

the saturated hydraulic conductivity,  or the soil pore size  distribution parameter,  or the soil

water tension each by itself should result in much less conditioning than the combined effect of

all three measurements.

The main objective of this chapter is to investigate the role of both indirect information

(soil water tension data) and direct information (Ks and " data), and the role of their spatial
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distribution (monitoring network or sampling strategy) on the uncertainty of the conditional

stochastic prediction of non-reactive solute transport under variably saturated conditions in

isotropic and anisotropic soils.  A second objective is to discriminate the effect that conditioning

has on the various measures of solute transport.  Besides analyzing the local concentration

moments (Rubin (1991a, Zhang and Neuman, 1994b), the conditioning effects on the spatial

plume moments (Dagan, 1982; 1984), on the arrival time (Smith and Schwartz, 1981; Zhang and

Neuman, 1994c), and on the integrated breakthrough (Zhang and Neuman, 1994c) at an arbitrary

compliance surface are examined. The structure of this chapter is as follows:  The theoretical

background and the implementation of the conditional unsaturated flow and transport model is

described in sections 10.2 and 10.3.   The hypothetical field soil sites for the conditioning study

are a subset of the example soils described in the previous chapter and are selected in  section

10.4.  The impact of different sampling strategies or monitoring network designs on the

reduction in the spatial moments of solute transport is investigated in sections 10.5 through 10.8.

Parameter uncertainty in the context of conditional simulation is addressed in section 10.9.

Section 10.10 discusses the role of the spatial plume moments as a measure to judge the effect

of conditioning.  In many applications involving environmental compliance at a particular

location or surface, the variable of interest is the solute arrival time or breakthrough curve and

not the spatial plume distribution.  In the two sections 10.11 and 10.12, the effect of conditioning

on several local and integrated measures of solute travel time is studied.  The conditional mean

concentration prediction at a highly conditioned site is compared to the deterministic inverse

modeling prediction in section 10.13.  The chapter closes with a summary and conclusion.

10.2 Theory of Conditional Simulation by Cokriging

In chapter 3.3 a method was introduced to generate conditional random fields of the

same random field variable (RFV) of which measurement data are available.  In the context of

this chapter the term conditioning is also applied to the  process of generating random fields (and
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their dependent functions) that are not only conditioned on data from the same RFV (direct data

e.g., random Ks fields conditioned on Ks data) but also or even exclusively on data from other

physically related RFVs (indirect data e.g., random Ks fields conditioned on head data).  The

conditional simulation technique used in this study is based on the same principles and

numerical techniques as the conditional simulation algorithm described in chapter 3.3, equation

3-14 (Journel, 1974;  Delhomme, 1979).  The important difference is that cokriging rather than

kriging is employed because of the multivariate nature of the problem.  The kriging equations

are given in (2-46) through (2-48).  The cokriging equations are identical to the kriging equations

(2-46), (2-47) in chapter 2 (Carr and Myers, 1985).  However, the array of measured data X1 in

(2-46) contains data from more than one RFV e.g., from saturated hydraulic conductivity data

and head data, while the array of unknown data X2 is - as in kriging - comprised of data

exclusively from one RFV e.g.,  the saturated hydraulic conductivity Ks.  712 in (2-46) is the

weight matrix of the measured data X1 with respect to the estimate X2, which is either of the

same RFV as X1 (kriging) or of a different RFV (cokriging).  In either case the kriging weight

matrix 712 is computed by solving the covariance matrix equation (2-47).  For the cokriging

case, the cross-covariances between two RFVs must be known to determine the matrices C11 and

C12 in (2-47).  Note, that the covariance and cross-covariance functions must be positive definite,

otherwise (2-47) has no general solution (Myers, 1982).
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10.3 Conditional Monte Carlo Simulation:  Methods

10.3.1 Principal Elements of the Monte Carlo Algorithm

The principal procedures in the conditional Monte Carlo simulation are identical to

those of the unconditional Monte Carlo simulation introduced in chapters 8 and 9 (see Figure

8.2).  Conditional realizations of f and a are generated and a conditional approximate solution

h is computed explicitly.  The realization of each of these three RFVs is passed to MMOC2,

which computes the steady-state soil water tension through a finite element solution of Richards

equation, the flux field through a finite element solution of Darcy's law, and the transient solute

transport by using a modified method of characteristics (chapter 5).  The procedure is repeated

for 150 to 300 realizations (see below).  Finally, the appropriate statistical sample parameters

are computed from the output of the Monte Carlo simulation.  The only difference between the

conditional simulations in this chapter and the unconditional simulations in chapter 9 is the

algorithm used to generate the random field realizations f and a and the approximate solution

h, all of which must be conditioned on measurement data, which are provided as input.  As in

the previous chapter, the statistical parameters describing the RFVs f and a are assumed to be

known.  The next sections discuss the actual implementation of the conditional random field

generator and the conditional extension of the ASIGN method described in chapter 7.  A flow

chart of conditional ASIGNing and Monte Carlo simulation is shown in Figure 10.1.

10.3.2 Generating Conditional Random Fields

The conditional random field generator developed for this study is an extension of the

spectral random field generator described in chapter 3.  Unconditional spectral representations

dZf and dZa are generated.  The unconditional realizations f and a are computed from their

respective spectral representations via fast Fourier transform (FFT).  The unconditional random

field realizations are needed to obtain the conditional random field realizations from (3-14).
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(10-1)

However, following the approach by Gutjahr et al. (1992), (3-14) is rearranged and the kriging

equation (2-47) is used to explicitly write the kriged terms in (3-14).  Then the algorithm for

generating the conditional realization can simply be written as:

where 721 is the kriging weight matrix, X2s is the unconditionally generated mean removed

realization f or a.  X1 is the array of field measured data (unconditional mean removed), which

may include f, a, and h data.  X1s is the array of unconditionally simulated data at the particular

locations, where measurements of the same variable are available in the field site (also

unconditional mean removed).  X2s
c is the conditional mean removed realization f c or a c.  (10-1)

is computed once for each realization of each RFV.

If X1 contains any head measurements (soft conditioning) or if (10-1) is used to compute

a linearized conditional solution hL
c = X2s

c  (conditional ASIGNing, see below), the

unconditional realization h must be computed from the unconditional realizations f and a to fill

X1s or X2s or both.  Conditional flow simulation therefore requires that the unsaturated flow

equation be solved twice: once to obtain the unconditional random field h from the

unconditionally generated realizations f and a, and a second time to obtain the conditional

nonlinear solution hc from the conditional realizations f c and a c.  

In the classical conditional approach,  the unconditional head solution  h is computed

using standard finite difference  or finite element models.   A more efficient method would be

to use ASIGNing (chapter 7), which combines the spectrally derived first order, linear

approximation hL of the head with the finite element model MMOC2.  This is still a

computationally very expensive conditioning algorithm.  For this study a much more efficient

alternative is chosen:  The computation of the "true" nonlinear unconditional head h(f,a) with

MMOC2 is omitted altogether.  Instead the linear approximation hL(f,a) is used to fill either X1s

or X2s or both on the right-hand side of (10-1).  Recall that the linear head solution hL is simply

cogenerated with f and a by explicitly solving for dZh(k) = f(dZf(k), dZa(k), H, ') (4-26) and by
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applying the FFT on dZh.  Using a linearized unconditional solution hL in the conditioning

process is consistent with the linear estimation procedure (10-1) from which the conditional

random fields f c and a c are obtained.

10.3.3 Conditional ASIGNing

The conditional random field realization hL
c from (10-1) is used as initial approximation

of the nonlinear finite  element solution hFE
c to the  unsaturated flow equation given the

conditional realizations f c and a c.  This is equivalent to the ASIGNing procedure for the

unconditional flow simulation (chapter 7), and is therefore called conditional ASIGNing.  The

conditional random fields hL
c obtained from (10-1) are accurate enough to allow the numerical

algorithm to  converge very  efficiently to  the conditional  finite element  solution hFE
c(f c, a c).

No rigorous study  similar to that  in chapter 7  has been implemented here to determine for

which range of soil heterogeneity conditional ASIGNing leads to efficient numerical steady-state

flow solutions.  However, in this work conditional ASIGNing has successfully been applied to

soils with Fy
2# 3.2.

It must be emphasized that the use of the spectrally derived linear head solution (4-26)

leads to a double advantage in the conditioning algorithm (10-1):  It allows for a very efficient

evaluation of the unconditional head field (which reduces the CPU time by approximately three

orders of magnitude compared to using MMOC alone, see Figures 7.6-7.8).  The unconditional

random head  solution in turn  is needed not  only to condition f and a,  but also to provide an

initial approximation  of the conditional  head field such that  the finite element  solution

converges approximately two orders of magnitude faster than without such an initial

approximation (chapter 7).   The computational savings achieved by using the linear, spectral

head solution hL in this context are so enormous that an entire conditional Monte Carlo

simulation of unsaturated steady-state flow with several hundred realizations can be carried out

as CPU-efficiently as a single conditional realization based on finite element solutions alone (i.e.
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without using the linear, spectral head solution).

10.3.4 Covariances and Cross-covariances for the Cokriging Matrix 721

To obtain the conditional random field X2s
c, the difference term (X1 - X1s) in (10-1) is

cokriged using the kriging matrix 721, which remains identical for all realizations.  Due to

storage space limitations, however, the entries to the kriging matrix 721 are actually recomputed

for every realization.  With a field size of over 10,000 nodes (size of X2s and X2s
c) and up to

almost 1000 data measurement points (a maximum 320 measurements of each of the three

variables f, a, and h) (size of X1 and X1s), the size of the 721 matrix would exceed 10 million

entries for each of the three RFV fields, which adds to the equivalent of 3*80Mb of memory

when stored in double precision (8 byte per entry).

The cokriging matrix 721 is obtained by solving the covariance matrix equation (2-47).

The solution is computed by inverting C11 using Cholesky decomposition.  The inverted matrix

is then multiplied with C12.  The subroutine SPPICD in ESSL (IBM, 1993) is used for the matrix

inversion.

The cross-covariance functions Cfh and Cah and the covariance function Chh in the

covariance matrices C11 and C12 can be computed from the analytical linear (cross-)spectral

density functions Shh, Sfh, and Sah (chapter 4).  In chapter 8 it was shown that these quasi-

analytical, linearized (cross-)covariance functions are in qualitative agreement with the

numerically determined, nonlinear sample functions, but differ in their absolute values if the

perturbations are large.  For the conditional simulation a modified quasi-analytical solution of

the (cross-)covariances is developed based on a calibration of the quasi-analytical, linear

(cross-)covariances against the numerically determined sample (cross-)covariance functions.

The analytical functions are multiplied by a correction factor (defined separately for each

(cross-)covariance function and for each example soil) such that the modified analytical

solutions match the numerical, nonlinear sample (cross-)covariance functions with minimal
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error.  The calibration of the analytical cross-covariance functions is implemented by visual

matching.  The head covariance is calibrated such that the modified analytical solution for the

variance exactly matches the numerically determined variance.  Preliminary experiments were

implemented and it was found that the results from the Monte Carlo simulation are very robust

with respect to the potential error in the calibration procedure.

Calibrating the analytical (cross-)covariances rather than directly employing the

empirical (cross-)covariance functions derived in chapter 8 has two advantages:  The analytical

cross-covariance functions are found to yield invertible covariance matrices C11.  However, no

attempt has been made to rigorously prove that either the analytical (cross-)covariance functions

or the calibrated (cross-)covariance functions yield positive definite matrix functions.  This point

needs to be further investigated.  The  second advantage is that the discretization and domain

size of the empirical covariance function becomes irrelevant if the empirical functions are only

used for calibration of the analytical functions.  The transport simulations in the last and in this

chapter, for example, are carried out in a domain roughly four times as large as the empirical

unsaturated flow studies in chapter 8.  Only the calibrated analytical (cross-)covariance

functions provide values of Cfh, Cah, and Chh at the large lag-distances needed in this conditional

flow and transport study.  Since the small lag-distances are the most important ones in terms of

cokriging, it is sufficient to use the empirical cross-covariance solution at short lag-distances to

obtain a reliable, calibrated analytical cross-covariance functions even at large lag-distances.
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10.3.5 Nodal and Elemental Properties in the Finite Element Model vs. Grid Properties

in the Spectral Random Field Generator

In the finite element realization that serves as hypothetical field site (see next section),

head h and concentration c are nodal values while the saturated hydraulic conductivity f and the

pore size distribution parameter a are element properties.  In contrast, the spectral random field

generator and conditioning algorithm assume an identical grid and support for all variables.  For

the purpose of the conditional simulation it is simply assumed that the support scale of the nodal

and elemental properties that are "measured" are identical, and that the bottom left node of each

element has the same support and location as the element itself.  This introduces a small error

in the computation of the cross-covariances (which are functions of distances between

measurement points; see chapter 9).  The error is negligible since the element discretization is

rather small compared to the correlation scale.  To be consistent, the assignment of nodal and

elemental properties in the finite element model from the conditional random field realizations

f c and a c and the initial head hc follows the reverse order:  The f, a, and h value at the ith column

in the jthrow of the conditional random fields are assigned to the ith  element in the jth element row

(f, a) and to the ith node in the jth nodal row (h), which is the bottom left node to the ith element

in the jth element row.

10.4 "Field Test Sites" and Sampling Strategies:  Methodology

10.4.1 "Field Test Sites"

The so-called "field sites" that are investigated here are computer-generated hypothetical

soil cross-sections (see also comment in the introduction to chapter 8).  Computer-generated

field-sites allow a rigorous analysis of the information content of measurement data that can be

retrieved through conditional stochastic simulation.  In the artificial field sites "field" hydraulic

properties and the movement of the contamination plume can be perfectly sampled.  The
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physical processes governing the flow and transport of the so-called "real" plume and the

random properties of the soil are perfectly  known.  Measurement errors, parameter estimation

errors, and upscaling problems can for the moment be neglected.

A number of field sites are studied in this chapter to evaluate the amount of uncertainty

reduction achieved by measuring relevant data in situ.  Each "field-site" is a single, randomly

chosen realization  from the unconditional  Monte Carlo simulations of the previous chapter.

Only a subset of the soil types and moisture conditions simulated in chapter 9 is chosen for the

purpose of conditional simulation.  The subset includes isotropic, anisotropic, wet, and dry soils,

soils with high textural variability and soils with moderate textural variability, soils with

correlated f and a, and soils with uncorrelated f and a (soil sites from simulations #3, #12, #15,

#21, #22, #28 in chapter 9, see also Table 9.1).  Independent of the mean moisture content or the

textural variability of the soil, soils with similar unsaturated hydraulic conductivity statistics are

expected to behave alike not only with respect to the unconditional concentration moments (see

chapter 9) but also with respect to the conditional concentration moments.

Soil #3 is isotropic with Fy
2=0.86 and a weakly anisotropic covariance in y.  All other

soils are strongly anisotropic with a vertical correlation scale of f, 8fz, equal to 50 cm and a

horizontal correlation scale of y, 8fx, equal to 300 cm.  Soil #12 (wet, correlated f and a) has the

lowest Fy
2 = 0.53.  Soils #28 (wet, uncorrelated f and a) and #15 (dry, uncorrelated f and a) have

similar Fy
2 = 1.76 and Fy

2 = 1.47, respectively, although their textural variability (Ff
2, Fa

2) differs.

Soils #21 (very dry, correlated f and a) and #22 (wet, uncorrelated f and a) both have a very high

Fy
2 = 3.12 and Fy

2 = 3.16, respectively. These sites are grouped into four categories of soils:

Isotropic soil with mild to moderate variability (#3), anisotropic soil with mild variability (#12),

anisotropic soil with high variability (#28, #15), and anisotropic soils with very high variability

(#21, #22).

10.4.2 Sampling Strategies
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Two basic sampling networks were designed for each of the three parameters f, a, and

h: a "sparse" and a "dense" sampling network.  The sparse sampling network consists of

measurement locations along three vertical columns near the plume source (e.g. tensiometer

nests or boreholes) spaced 1 horizontal 8fx apart with measurements at every 28fz depth interval

(e.g. Figure 10.5e).  No data are sampled from an area within 28fz of the bottom boundary of the

simulation domain.  The center column intersects the source area of the solute plume (see

chapter 9).  The total number of data points in the sparse network is 40.

A dense sampling network consists of double the data-density of the sparse sampling

network i.e., 0.5 8fx in the horizontal and 1 8fz in the vertical.  In the dense sampling network,

the data are sampled throughout the entire simulation domain except the area within 28fx of the

vertical simulation domain boundaries (e.g. Figure 10.6a) resulting in a total of 320 data points

per RFV.  Measurements of Ks and " are obtained at identical locations.  The sampling grid for

the head measurements is shifted both in the vertical and horizontal direction such that a head

measurement point is at the center between four adjacent Ks measurements (Figure 10.5i).  The

dense sampling network also includes measurements at all locations (nodes or elements) within

and adjacent to the contamination source, which is defined on the nodal grid. Monte Carlo

simulations are implemented with various combinations of f, a, and h sampling networks as

listed in Table 10.1.

10.5 Conditional Simulation of Unsaturated Flow

The results of the conditional flow simulations are important to subsequently understand

the behavior of the conditional solute plume, since conditioning directly affects the uncertainty

about the prediction of the soil water tension h and the logarithm of the unsaturated hydraulic

conductivity y.  The reduction of the velocity and concentration variance is only an indirect

consequence of the conditioning.  The effect of conditioning on the statistical moments of y, h,

and the pore velocity v is demonstrated for the two conditional simulations A and G (Table 10.1)
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of field site #28, a highly variable, wet, anisotropic soil with uncorrelated f and a.  Monte Carlo

simulations of other field sites give qualitatively similar results.  Field-site #28 (like all other

sites except #3) is a vertical cross-section that is 12.8m deep and 24m wide, which is

approximately as wide but twice as deep as the experimental Las Cruces trench site (Wierenga

et al., 1991).  The variability of f and a is 2.25 and 0.04, respectively.  The two parameters are

considered to be independent of each other.  The geometric mean of alpha, ', is 0.01 cm-1.

Recall, that the soil is anisotropic with correlation scales for f and a of 3m and 50 cm in the

horizontal and vertical direction, respectively.  The cross-section is therefore about 26 8fz deep.

Figure 10.2a-d shows the actual field values of the maps of y, h, and the pore velocity

components vx and vz at site #28.  The cross-section of y has the typical random character

described in chapter 8.  In the center of the cross-section a high conductivity lens is layered

immediately above a relatively low conductivity area (Figure 10.2a), which correlates with a

partially saturated, very wet lens overlying a dry area with a relatively high tension (Figure

10.2b).  The horizontal velocities reach some of their highest absolute values in this large, wet

region, because flow is around the low conductivity area.  Another distinct feature of the

horizontal velocity field at the site is a strong positively diagonal downward/sideward flow

immediately beneath the contamination source (Figure 10.2c).   The vertical velocity field has

the typical pattern of broad low velocity areas interrupted by relatively narrow vertical bands

of higher velocities (Figure 10.2d, see chapter 8).

The main features are preserved in the mean predictions of the two conditional

simulations A (Figure 10.2e-h) and G (Figure 10.2i-m).  A is based on a dense data network of

all three variables f, a, and h, while G is based on only 40 soil water tension data (sparse

network) from three tensiometer nests.  As the number of conditioning data decreases, the mean

prediction becomes more and more uniform, asymptotically approaching the stationary moments

of the unconditional simulation.  Since only head information is available to conditional

simulation G, it is not surprising to find that the head data are those best preserved.

Figure 10.3a-d again shows the field site values of y, h, and v together with the variance
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distribution of the two simulation A (Figure 10.3e-h) and G (Figure 10.3i-m).  In conditional

simulation A, the variance of y (Figure 10.3e) decreases to less than 0.1 at the f and a

measurement points (but not at the head measurement points) compared to an unconditional

variance of 1.8.  The extremely low variance is very local.  Due to the anisotropic structure of

the soil, the conductivity variance is reduced significantly stronger in the horizontal vicinity of

the measurement points than in the vertical vicinity.  Between rows of measurements, the

conductivity variance increases to values of nearly 0.7 in conditional simulation A.  In the sparse

data conditional simulation G, the minimum local variance of y is  several times larger than in

conditional simulation A with values between 0.4 and 0.7 (Figure 10.3i).

The head variance in much of the area with tensiometer data is reduced to less than 150

cm2 in conditional simulation A (Figure 10.3f) from 4900 cm2 in the unconditional simulation

(chapter 8).  The head variance, however, is nowhere less than 120 cm2.  In conditional

simulation G where no other data are used besides head, the variance reduction is not as strong

with a minimum variance of less than 300 cm2 (Figure 10.3k).  Despite the use of conditioning

head data, the head variance does not become zero at the measurement points.   Neither does the

mean head at those locations always coincide with the measured value (Figure 10.4a).  This is

an artifact of the linear conditioning procedure (Kitanidis and Vomvoris, 1983;  Peck et al.,

1988;  Yeh et al., 1993;   Gutjahr et al., 1994):   The conditional realizations f c and a c are

obtained through linear estimation (10-1) from head measurements (among others).  But the

conditional realization hc is computed by solving the nonlinear flow equation (5-1).  Note that

the head measurement data cannot be applied as internal boundary conditions in the finite

element solution.

Although not entirely consistent, the conditioning technique generally gives satisfactory

results.  It is weakest in areas where steep head gradients exist e.g., in the center of the

simulation domain between the very wet and very dry areas mentioned above (Figure 10.4a).

In those areas the head changes rapidly with distance, and if the location of the steep head

gradient is not predicted with a very high accuracy, large head variances and a significant
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deviation of the mean head form the measured head are the result.  At field sites with smaller

Fy
2, the discrepancy between measured and mean conditional head decreases (Figure 10.4b,c).

Future work will have to assess how much more consistency is achieved by using a numerical

nonlinear solution instead of a first order perturbation solver within the conditioning algorithm.

In the vicinity of datapoints the horizontal velocity variance is reduced stronger than the

vertical velocity variance:  from an unconditional variance of 0.02 (cm/d)2 to less than 0.004

(cm/d)2, a reduction of over 80% (Figure 10.3g,l).  In contrast, the vertical velocity variance is

reduced only to approximately 60%-80% of the unconditional variance (Figure 10.3h,m).  The

conditioning effect in the horizontal direction is very strong for the horizontal velocity, which

can be particularly well seen in the results for simulation G.  The vertical velocity components

are well-conditioned by data in the immediate vertical vicinity, while conditional f, a, and h data

have little effect on the vertical velocity in the nearby horizontal vicinity.  This is not surprising

since the vertical velocity covariance has a strong vertical correlation scale and a very short

horizontal correlation scale (see chapter 8).

10.6 Sampling Network Design Impacts on Concentration Prediction

10.6.1 Organization of Graphical Output for Concentration Moments

The maps of the actual plumes, of the mean concentration mc, and of the concentration

coefficient of variation CVc are plotted in Figures 10.5 - 10.22.   The organization of each of

these figures is identical:   Each figure is divided  into twelve panels plotted in four rows and

three columns.   Each panel shows a  vertical cross-section of the soil  site with the horizontal

axis being the horizontal distance [cm] and the vertical axis being the vertical distance [cm].

Each vertical row represents the results of one Monte Carlo simulation (MCS) or of the actual

plume movement.   The variable that is  mapped in the panels is indicated above the top panel

of each column.  Each panel in a column represents a different output time.  It increases from

top to bottom and is measured in dimensionless units t' = Vz / 8fz.  Vz is the (arithmetic) sample



Harter Dissertation - 1994 - 338

mean vertical velocity computed from the unconditional MCS for the particular soil site (chapter

8).  8fz is the vertical correlation scale of f.   t'=0 is the time of solute release.   The initial area

of uniform concentration is  indicated by the small black box in each panel.   The output times

are identical to those of the unconditional MCSs in chapter 9 (see Table 9.2) and are indicated

in the panels of the leftmost column of each figure.  Each row corresponds to only one output

time.  The concentration maps are plotted with five gray-shaded contour levels, to which the

labels are found at  the right side of  the rightmost column.   The soil site number (#) to which

the results belong is indicated in the bottom right corner.  Note that the actual and mean

concentration contour levels at a particular output time t' are identical for the maps of all MCSs

of one site and correspond to the contour levels chosen for the actual plume.  All concentration

data are normalized with respect to the initial concentration c0.  The contour levels have

logarithmic intervals (log base 10) and range over two orders of magnitude such that the

maximum contour level  is at the most 15% below the peak concentration of the actual field

solute plume at time t' (e.g. if the peak concentration is 9.45E-2, the contour levels are from

9.00E-4 to 9.00E-2).  In all panels showing CVc maps, the CVc contour levels are in increments

of 0.3 in the interval  from 0.5 to 2  as indicated by the labels on the right side of each figure.

In addition, the minimum CVc of each CVc map is printed out explicitly and the location is

indicated where necessary.  The first panel in each column indicates the locations where

conditional data are available for the MCS shown in that column.  Open circles are datapoints,

at which f and a data are measured.  Black dots indicate soil water tension measurement points.

Unless it is the map of the actual plume, the second panel in each column indicates the type of

MCS with the amount of data used for conditioning.

10.6.2 Solute Plume Movement at the Field Site

Again, field site #28 and the results from its Monte Carlo simulations are discussed at

length in this section.  The Monte Carlo simulations of other example soils are discussed more
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briefly in subsequent sections, where the emphasis is a comparative analysis.  The plume

dynamics at field site #28 are depicted in Figure 10.5a-d.  Initially the plume moves diagonally

downwards along a strong diagonal velocity field (Figure 10.2c,d), the tip of the plume splits

into two at an early travel time and spreads horizontally as it reaches a large wet area located

above a relatively dry lens in the center of the simulation domain (see previous section).  At late

time t'=31 residual concentration is found primarily within and underneath the dry, low

permeability area.  The plume is distinctly non-Gaussian with no tendency towards a more

Gaussian behavior even at late times (see also chapter 9).

10.6.3 Sensitivity of Concentration Moments to  Sampling Networks (Site #28)

"Dense"  sampling network for all parameters (f, a, h):  simulation A

In this first example, data are available at a high sampling frequency (every five nodes

in each  direction or 0.58f in the  horizontal and 18f in the vertical).   Both independent RFVs

f and a are sampled at identical locations.  The soil water tension  h is measured at nearby

locations (conditional simulation A, Table 10.1).  This is the highest density measurement grid

used in any of the simulations (Figure 10.5e).   From a practical point of view,  such a high

density of observation points  cannot be achieved without  partially removing or destroying the

site (e.g., in the trench site experiment by Wierenga et al., 1989)  But this type of conditional

simulation serves as a benchmark test to illustrate by how much prediction uncertainty can be

reduced in an optimally sampled field site.

As would be expected, the conditional mean concentration distribution is very similar

but not identical to the actual concentration distribution (Figure 10.5e-h).  The conditional solute

plume shows many of the broader patterns of the actual field plume, but does not distinguish

between some local random patterns.  The length scale associated with the differences between

the conditional plume and the actual plume is significantly larger than the scale of the sampling
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intervals for the f, a, and h data (compare actual and mean plume at, for example, t'=8).  There

are several reasons to explain why it is possible that the conditional simulation uncertainties go

beyond the confinement of the measurement grid:

a.  The available field measurements are only indirect pieces of information with respect to

predicting the movement of the solute plume.  Neither concentration nor velocities are

measured directly to confine the predictions.

b.  Even the information about the hydraulic conductivity itself is not entirely certain anywhere

because head measurements are taken at different points than f and a measurements.

A small amount of uncertainty about y remains even at the f and a data locations,

especially in this highly heterogeneous soil (see Figure 10.3e).

c.  The conditioning on the head data has been implemented only in a linear, approximate

manner i.e., the conditioning algorithm does not yield a zero head variance at the head

data locations (see section 10.3 and results in section 10.5).

The conditional concentration prediction from simulation A clearly shows the early diagonal

displacement, the horizontal spreading along a low permeability zone in the center of the

simulation domain, the breakthrough to the bottom boundary in the right half of the domain at

t'=16, and the residual concentration below the low permeability zone at late time t'=31.  The

movement of the highest concentrations,  or the plume center,  is predicted very accurately.

Error in predicting lower concentrations is indicated by the slightly larger vertical and horizontal

spreading of the conditional mean plume.  Conditioning at this density is very useful not only

for predicting the movement of the center of a contaminant plume but perhaps more importantly

the general patterns of the fringes of the contamination plume (indicated by the c/cmax(t') = 0.01

contour line).  The approach seems particularly useful to identify possible preferential transport

paths on one hand and solute retention areas on the other hand.

To assess the difference between prediction and actual plume the absolute nodal error

measure E is introduced:
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(10-2)

where S indicates the simulation domain, <c(x)>c is the conditionally simulated mean

concentration, and cf(x) is the actual field-site concentration at node location x.  For the four

output times t' = 4, 8, 16, and 31 in Figure 4.5e-h, the absolute nodal error in the conditional

simulation is  E = 5.4, 4.7, 3.9,  and 2.8, respectively.   This is approximately  40% less than in

the unconditional simulation with  E = 9.0,  8.0,  8.7, and  4.0, respectively (Figure 10.7i-m).

Note, that the nodal error measure emphasizes errors in the regions of high concentrations.

Errors occurring away from the center of the conditional plume are small and therefore

insignificant with respect to E and cannot be reflected by such a measure.  Often, however, very

low concentrations are of equal concern.  Then a "success" measure like E can be very

misleading.

A statistically important measure of the quality of the simulated prediction is the

concentration coefficient of variation CVc where CVc = stdc / mc, the ratio of the concentration

sample standard deviation over the sample mean concentration.  Figure 10.8e-h depicts the

dynamics of the CVc plume for conditional simulation A.  The CVc plume depicts areas of least

uncertainty (darkest colors).   At the CVc = 2 contour line,  it is generally  as wide or wider in

the horizontal direction as the mean concentration plume at the 1% c/cmax(t') contour line, but

vertically less extensive than the mean plume.  This is consistent with the 0.58f horizontal

sampling density vs. a 1.08f vertical sampling density and  the general anisotropic structure of

the soil.   It is also consistent with the fact that the head correlation scale is larger in the

horizontal direction than  in the vertical direction.  Conditioning reduces concentration

uncertainty stronger into the horizontal distances than into the vertical distances from the

measurement point.  The minimum coefficient of variation in the center of the CVc plume

increases with time from 0.35 at t'=4 to 0.56 at t'=31 indicating increased uncertainty near the

center of the plume.  The minimum CVc location coincides with the location of the peak mean

concentration.  Like in the unconditional simulations of chapter 9 (see also Figure 10.7i-m), the
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area of low uncertainty defined by the CVc=2 contour increases with increasing mean plume size

and time (compare Figure 10.8e-h with Figure 10.5e-h).

Numerical mass balance problems contribute approximately 0.1 to the CVc.  This value

is estimated by computing the coefficient of variation of the mass balance variability between

different realizations.  Initially the numerical mass balance error CVbal(t) = stdbal(t) / masstot

(standard deviation of the total mass balance in the domain divided by the total initial mass) is

zero, then rapidly increases at early time and reaches a relatively stable plateau of 0.1.  The mass

balance error is inherent to the modified method of characteristics and must be attributed to the

heterogeneous velocity field, for which the fourth order Runge-Kutta travel path integration is

known not to be accurate (see chapter 5).

Not sampling ", dense grid

Simulation B (Figure 10.5i-m) uses the same f and h data as simulation A, but assumes

that nothing is  known in situ about log".   Only its unconditional  mean and  variance and the

form of its pdf are given.  The difference between the conditional concentration moments of

simulation A and B is small,  because the variance of log" is  not very large  and the soil  is

rather wet.  The information about Ks and h gives reasonably accurate estimates of the

unsaturated hydraulic conductivity  even without measurements  of ".  The mean  plume is

slightly larger with a smaller peak concentration.  At early time (t'=4), simulation B has 25%

higher CVc than simulation A, but as time proceeds, the differences in CVc decrease (Figure

10.8i-m).

Sampling saturated hydraulic conductivity only

The uncertainty reduction relative to the unconditional MCS that is achieved from

saturated hydraulic conductivity measurements alone is considerably smaller than in the
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previously discussed conditional simulations A and B.  When sampled in a dense network

(simulation C, Figure 10.6a-d), the minimum CVc at t'=4 is 0.81, almost double as large as in

simulation B,  which includes the head measurements in addition to the data used in simulation

C.  The ratio of the minimum CVc in simulation C over that in the unconditional simulation

decreases only slightly with time.  Since the variance of a is moderate, f data are helpful in

discriminating the most  probable fast flow  paths from likely slow flow areas.   The diagonal

flow path near the source is obvious in the conditional mean prediction, and so is the low

permeability area in the center of the cross-section.  Clearly, the peak concentrations in C are

lower than in simulations  A and B due  to the larger concentration  variability.  When f is

sampled only on the sparse network (not shown) the results are almost identical to those shown

in Figure 10.6e-h for conditional simulation D with f and a data on the sparse network.  The

indifference between the two simulations is again due to the moderate variability of a, its

relatively small mean value, and the relative wetness of the soil (the unsaturated hydraulic

conductivity differs little from the saturated hydraulic conductivity).  Compared to the dense

sampling network for f (simulation C), the conditional solute plume D is considerably more

disperse, particularly at later time.  The minimum CVc=0.88 at t'=4  is a less than 10% increase

over simulation C but CVc=1.29 at t'=16 is a 30% increase over simulation C.  These values

approach those for the unconditional simulation, even exceed them at t'=16.  The CVc away from

the plume center, however, is always less in conditional simulation D than in the unconditional

simulation.

Sampling soil water tension only

For the conditional simulation G, three hypothetical tensiometer nests are installed three

meters or one correlation length apart with tensiometers placed every one meter or two

correlation lengths in the vertical (sparse sampling network).  The forty head measurements are

used for conditioning the f and a input random fields.   Sparse sampling network G yields the
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least conditioned simulation in this study.  Nevertheless the tensiometer data cause a significant

improvement in the mean concentration prediction compared to the unconditional mean

concentration prediction (compare Figure 10.7e-h and Figure 10.7i-m).  The mean plume

movement indicates the initial  diagonal movement, the split of the plume into two lobes and it

hints at a low permeability zone  in the center of  the simulation domain.  The peak

concentrations are much closer to the actual peak concentration than in the unconditional

simulation.  The estimates of both the front and the tail of  the plume are more realistic than in

the unconditional simulation.

If the number of  tensiometers is doubled in   both the vertical and horizontal direction

and extended over a larger cross-section  (conditional simulation F,  Figure 10.7a-d), the

prediction of the expected concentration does not improve very much.   This shows that

additional measurements of the tension are not associated with an equal amount of uncertainty

reduction.  The minimum CVc at t'=4 are 0.50 and 0.65, respectively, compared to 0.95 in the

unconditional simulation.  Similar ratios between the minimum CVc of the different simulations

are obtained at later times.  The minimum CVc in both simulations F and G are significantly

lower than in simulation C  (dense f data, direct conditioning)   (0.50, 0.65 vs. 0.81).   In terms

of uncertainty it therefore appears that soil water tension data by themselves yield a greater

improvement of the prediction than saturated hydraulic conductivity data.  Only at t'=31, the

minimum CVc in  simulation G is  higher than in simulation C, while the minimum CVc in

simulation F  (dense h data, indirect conditioning)  remains below that  in simulation C.  This

is in partial contrast to the mean concentration prediction, which - particularly at t'=16 and t'=31

- seems significantly better in simulation  C than in either  simulation F or G.   The relatively

lower minimum CVc  in simulations F and G is probably caused by the smaller horizontal

spreading of the mean concentration plumes and its higher peak concentration.

Also, for both the sparse and the dense sampling networks, the conditional CVc plumes

seemingly "know" more about the actual plume behavior than the respective mc plumes, since

their spatial pattern better  mimic the actual plume.  This latter observation is partially
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coincidence, partially due to the particularly strong horizontal spreading of the plume around

t'=16.  Horizontal velocity components have a stronger horizontal correlation than vertical

velocity components.  Similar observations are not made in MCSs of other field sites.

The results underline the importance of soil water tension data in the conditional

simulation of transport  in highly heterogeneous  flow fields.   They also indicate that the

minimum CVc alone  can only serve  as a guideline to measure reduction in prediction

uncertainty.

Other sampling network combinations for f, a and h

Figure 10.6i-m shows the mean concentration results for conditional simulation E based

on a sparse network of f and a measurements combined with a dense network of h

measurements.  Again, the results are almost identical to those with sparse f data alone together

with a dense h measurement network (conditional simulation H, Figure 10.21a-d).  The spatial

concentration distribution is significantly better predicted than in either simulation D or F alone.

The mean plume is much less dispersed resulting in higher concentrations at the center of the

plume.  The improvement is particularly visible at t'=16, when both the actual and the mean

plume exhibit the strongest horizontal spreading.  The visual information is supported by the

results for CVc (Figure 10.9i-m).   The minimum CVc for  simulation E at t'=4, for example, is

0.43 compared to  0.88 and 0.50 in simulations  D and F, respectively.   The simulation results

are also better than those obtained from conditioning on a dense f sampling network (simulation

C) and very similar to simulation B which utilizes dense network data for both f and h.

Compared with simulation F, the additional saturated hydraulic conductivity information

particularly helps to outline the extremely high and extremely low permeability areas, since the

spatial variability of "  is not very strong.   But the comparison  between simulations  B and E

also points to the fact  that there is no gain  in increasing the  number of f measurements from

40 to 320, when so many head data are already available for conditioning.  This is particularly
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important, since saturated hydraulic conductivity measurements are much more difficult to

implement in situ than head measurements.  The results from this simulation indicate that a

combination of in situ h and f data, with more h measurements than f measurements, may be the

most economical approach to design a monitoring or sampling network.

10.6.4 Comparison to a Dry, Anisotropic Field Site of Equivalent Variability in y

Field site #15 has a much smaller textural variability than field site #28:  The variance

of f and a are only 1 and 0.01, respectively, instead of 2.25 and 0.04 at site #28 (see chapter 8).

However, the increased dryness (mean head H = -1000 cm) leads to a strong increase in the

unsaturated hydraulic conductivity unconditional variance, which is 1.5 compared to an

unconditional variance of 1.8 at field site #28.  The head variances are also similar:  Field site

#15 has an unconditional head variance of 4400 cm2 vs. 4900 cm2 at field site 28.

Figure 10.11a-m shows the actual plume at the field site and the conditional mean

concentration for the highest density and lowest density data simulations discussed above

(simulations A and G).  Not surprisingly the tortuosity of the spatial path taken by the plume is

very similar to field site #28.  The agreement between the conditional mean plumes A and G and

the actual plume is comparable to the findings at field site #28.  This visual impression is

confirmed by the concentration coefficients of variation, which are very similar to those found

in the equivalent conditional simulations of field site #28 (Note that the output times for field

site 15 are slightly different:  5, 10, 20, and 40 instead of 4, 8, 16, and 31).  At similar variances

of the unsaturated hydraulic conductivity and soil water tension and for the same mean " and

correlation structure, the effects of conditioning on a set of f, a, and h data (simulation A) or on

h data alone (simulation g) are similar, regardless of the mean soil water tension and the

variability of the soil saturated hydraulic conductivity.

However, conditioning on f alone (conditional simulation C) neither improves the mean

concentration prediction, nor reduces the minimum CVc as much as in the wet soil #28 when
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compared to the unconditional simulation (Figure 10.11n-u;  Figure 10.12n-u).  Relative to

simulation G, the mean concentration in simulation C has a much larger longitudinal and

transverse extension indicating significantly more uncertainty about the actual travel velocity

and the travel path.  The higher uncertainty is caused by the weak correlation between saturated

and unsaturated hydraulic conductivity in dry soils, if f and a are uncorrelated.  In contrast, the

soil water tension data as in site #28 provide information not so much on the unsaturated

hydraulic conductivity but on the gradient field and hence the approximate travel path of the

plume.  If data on a and f are not available or if data on only one of the two parameters is

available, soil water tension data must therefore be considered an important source of

information for more accurate transport predictions.
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10.7 Unsaturated Hydraulic Conductivity Variance and the Effect of Conditioning Data

Increasing the unsaturated hydraulic conductivity and head variance leads to increased

solute spreading and increased uncertainty in the prediction of the mean travel path of a solute

plume.  This theoretical result (Russo, 1993a) has been confirmed in the previous chapter.  Here,

a qualitative analysis is given of the effect of soil variability on the conditional concentration

moment prediction.  The concentration moments of two field sites are compared with those

discussed in the previous section.  All field sites have the same anisotropic correlation structure

for f and a and the same mean F and A (see previous section, chapter 8).   Field site #12 is a

moderately heterogeneous soil with correlated f and a, an unsaturated hydraulic conductivity

variance Fy
2 = 0.53 and a head variance of 1900 cm2 with a mean head H = -150 cm.   Field site

21 is the same as field site 12, but in a very dry condition (H=-3000 cm), resulting in Fy
2 = 3.2

and a head variance 7600 cm2.  In terms of Fy
2, field site 12 ranks lowest and field site 21 highest

among the sites tested.  Note that Daf=1, which means that f data perfectly predict a at the same

location.

The unconditional plume for  field site #12 is much  less dispersed than those at other

field sites (Figure 10.13a-d).  Consequently the unconditional simulation itself is a fairly good

description of the actual plume  (at least compared to the conditional simulation results at field

site #28), although ergodicity (zero concentration variance) is not achieved even for this

moderately heterogeneous soil.  The most obvious difference between the unconditional mean

plume and the actual plume is the  rate of displacement.   At t'=20, for example,  the center of

the actual plume has traveled significantly further than the center of the unconditional plume

(compare Figure 10.13a-d to Figure 10.15a-d).  The conditional simulation A (high data density,

Figure 10.15e-h) captures the actual rate of displacement of the field plume as well as its

particular shape.   In contrast,  the conditional simulation  G (sparse head data only, Figure

10.15i-m) offers little  improvement over the unconditional simulation.   This is again reflected

in the concentration coefficient of variation (Figure 10.14a-d and Figure 10.16e-h,i-m).  At t'=20,
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the minimum coefficient of variation in the unconditional simulation is 0.79, which decreases

by less than 25% to 0.63 in conditional simulation G, but by more than 75% to 0.19 in

conditional simulation A.  Similar observations can be made at other output times.  This is a

much better improvement in conditional simulation A compared to the results for field site #28,

but much less of an improvement in conditional simulation G.  The difference is caused by the

changing information content of the data that are used for conditioning:  In the heterogeneous

soil #28, the flow path of the plume is rather tortuous and hence dictated primarily by the spatial

distribution of the soil water tension.  In this soil (#12), flow is almost parallel, a situation which

has been conceptualized in many stochastic soil flow and transport models as the "parallel

column model" (c.f. Destouni, 1993).  Here, the uncertainty is reduced to predicting the rate of

solute displacement while the travel path is well-known.  The vertical velocity is then primarily

controlled by the saturated hydraulic conductivity and ".  In simulation G, these values are

conditioned indirectly through the h data.  In simulation A both are known at a high density and

combined with the lower variability of the soil result in a lower CVc than the comparable

simulation for site #28.

For the same reasons, h data are even more important in simulating site #21 than in

simulating site #28.  The unconditional mean concentration prediction (Figure 10.13e-h) has a

very high variability (Figure 10.14e-h).  Nevertheless, the characteristic features of the actual

plume are well captured  even by conditional simulation G  (compare Figure  10.17i-m with

Figure 10.17a-d):   The initial diagonal  displacement (t'=5), the characteristic s-shape at t'=10,

and the residual concentration not far below the source.  Although conditional simulation A

(Figure 10.17e-h) offers  considerable improvements over simulation G, the uncertainty

associated with an unconditional simulation is so large that the three tensiometer nests for

simulation G alone offer almost as much improvement in prediction accuracy as all the data in

simulation A together.  Again, the visual impression from the mean plume maps are confirmed

quantitatively by the CVc.  At t'=5, the unconditional minimum CVc is 1.51 (Figure 10.14e),

which improves by over 50% in simulation G to 0.73 (Figure 10.18i), and by almost 70% to 0.47
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in conditional simulation A (Figure 10.18e).  Similar results occur at t'=10.  At t'=20, the

minimum CVc of the unconditional simulation reduce to 1.37, while those for the conditional

simulations further increase relative to earlier time.

The two field sites #12 and #21 are particularly educational in that they illustrate how

the information  content of field data with respect  to the conditional moments of the

concentration changes with soil water content.  Both sites represent the same type of soil, but

under different mean  soil water tension conditions.   Depending on H, the same amount of on-

site field data yields  distinctly different improvements  in the conditional  plume prediction

relative to an unconditional stochastic plume prediction.  Conditioning on tensiometer

measurements is  particularly useful in soils with highly heterogeneous flow paths i.e., in soils

with a high degree of textural heterogeneity, in very dry soils, or in soils with a steep average

slope " of the logK(h) function.  In soils with almost exclusively parallel vertical flow and

therefore only mildly heterogeneous unsaturated hydraulic conductivity fields, the same

tensiometer measurements have almost negligible effects.  In contrast, saturated hydraulic

conductivity data  and data defining " are  important data to  reduce uncertainty in soils with

more or less vertical parallel flow.  But they loose their information content (measured in terms

of minimum CVc reduction  relative to the  unconditional minimum CVc) in soils with very

tortuous flow paths.

10.8 Anisotropy Ratio and the Effect of Conditioning Data

The isotropic soil site 3 is chosen for comparison with the conditional simulation results

of the previous two sections.  Relative to the horizontal correlation scale, the horizontal plume

spreading is much  larger in the isotropic soil  than in the anisotropic soil #28,  even though Fy
2

at site 3 is only half of that at site #28 (see chapter 9).  Note, that the vertical to horizontal scale

ratio for all site 3 maps is 3:1 (half the aspect ratio 8fh/8fz of the anisotropic soils) instead of 1:1

(as in all maps of the anisotropic soil sites).  Thus, the horizontal correlation scale for the site
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#3 maps appears as half the absolute length of the correlation scale for the maps of the

anisotropic soils.

Since flow path tortuosity (Figure 10.19a-d) contributes considerably to the uncertainty

in the concentration prediction, in situ head measurements significantly reduce the prediction

uncertainty (compare Figures 10.13i-m, 10.14i-m to Figures 10.19i-m, 10.20i-m).  The minimum

CVc reduction at t'=5 is more than 50% from 1.07 to 0.51 with simulation G, and more than 85%

from 1.07 to 0.14 with simulation A.    Curiously, however, in this particular case the

tensiometer data increase the error in the mean concentration prediction near the source at t' >

10:  In simulation G, a secondary concentration peak appears and remains immediately

underneath the source.  Since the CVc in this area is very high, the anomaly is probably caused

by an outlier and should be neglected.

10.9 Conditional Simulation under Parameter Uncertainty

In all of the previous simulations it is assumed that the stochastic parameters describing

the first and second moment of the input parameters f and a are known with certainty.  In

actuality, these parameters must be derived from a sample population of field and laboratory

measurements.  Generally, these sample populations are very small and the estimated mean and

covariance are themselves RFVs (see chapters 3 and 8) i.e., their actual value is associated with

a degree of uncertainty that is best measured in terms of the theoretical sampling error.  Note

that sampling errors are not the same as measurement errors.  The effect of measurement errors,

although important, has not been considered here.  Parameter uncertainty in a conditional

stochastic framework has been addressed by Smith and Schwartz (1981b) who implemented a

specific type of conditional Monte Carlo analysis of saturated flow and transport to assess the

additional uncertainty introduced by the sample  estimation of the saturated hydraulic

conductivity.  Their objective was to assess the difference in the moments of the solute flux and

concentration distribution introduced to the unconditional stochastic analysis by parameter



Harter Dissertation - 1994 - 352

uncertainty.  Their approach was too CPU expensive to address the combined effect of

parameter uncertainty  and measurement network design.   The conceptual limits imposed on

their study are the same for this study.  Therefore, an alternative method is implemented to

understand - at least qualitatively - the effect of parameter uncertainty in the conditional

framework presented here.

Unlike the method by  Smith and Schwartz  (1981b)  it is not the objective of this

exercise to define quantitatively the increase in concentration variance or the change in mean

concentration due to parameter uncertainty (which is computationally not feasible for the

conditional case).   Instead the problem is tackled from the following point of view:  How

different is a MCS result, if the sample moments, which are used as input to the MCS, are "far

off" the actual ensemble moments?  As in Smith and Schwartz (1981b), the exercise here will

be restricted to the assessment of the effect of parameter uncertainty in the mean and the

variance of the input RFVs f and a and in the mean H of the soil water tension.  It is still

assumed that f and a are known to be Gaussian distributed, that they are independent of each

other (Daf = 0), and that the correlation functions of f and a are known with certainty.  For the

purpose of this exercise, "far off" sample moments are defined by the 95% confidence interval

of the sample  moment distribution.   For simplicity and  without loss  of generality,  the

distribution of the sample moments is assumed to also be Gaussian (instead of e.g. the t-

distribution most  commonly used).   Then the standard  deviation ,G of the sample mean G of

g (g=f,a,h) is the square root of (8-3) and the standard deviation ,s.g of the sample standard

deviation stdg is the square root of (8-5) (chapter 8).  The "far off" sample moments are the

means mg.95 = :g ± 2,G and the standard deviation stdg.95 = Fg ± 2,s.g, where :g is the ensemble

mean and Fg is the ensemble standard deviation of g.  Theoretically, the sample moments are

"worse" i.e., more different from the ensemble moments, in only one of twenty sampling

campaigns.

Data for the conditional simulation H of soils site #28 are chosen to demonstrate the

method.   Conditional simulation H consists  of 40 measurements of f,  40 measurements of a,
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and of 320 measurements of h (Table 10.1).  Since the f and a measurements are taken at least

one correlation length apart, one can reasonably assume independence.  Using (8-3) and (8-5),

,F = 0.24,  ,A = 0.032,  ,s.f = 0.17,  ,s.a = 0.022.   Hence,  with a  95% probability  the  sample

mean estimates of f and a are within the intervals [-0.5, 0.5] and [-4.7, -4.5], respectively (two

standard deviations about the mean).  Note that the uncertainty about the mean of " is so small

that it can be neglected.  With the same probability, the sample standard deviations of f and a

must be within the intervals  [1.2, 1.8] and  [0.16, 0.24], respectively.   The soil water tension

data exhibit a much stronger correlation and are available at a much denser grid.  It is

conservatively assumed that the 320 correlated head data are equivalent to only 50 independent

head data.  From chapter 8, the unconditional head standard deviation is known (70 cm).  Then

,H . 10 cm.

Four Monte Carlo simulations are implemented.  The first one (simulation I) is

implemented with overestimated parameters for the variances of f and a (Ff=1.8, Fa=0.24).  It

also strongly overestimates the mean of a.   Although A can be determined very accurately under

the above assumptions, it is the most difficult one to estimate in the field, since it is generally

derived from fitting theoretical equations such as Gardner's (chapter 4) to measurements of

unsaturated  hydraulic conductivity or the soil water retention curve.  In the first simulation,

mean log"  is therefore set to -4.0, simulating a type of measurement error of half an order of

magnitude.  Thus the unsaturated hydraulic conductivity is expected to be lower than in the

actual field site due to the steeper average slope of the unsaturated conductivity function.  Figure

10.21e-h shows the conditional mean concentration for this case in comparison to the simulation

with the correct parameters (Figure 10.21a-d).  Due to the reduced mean vertical flux (lower

mean conductivity), the plume moves much slower, but along the same path as in the perfect

parameter case.   The higher variance in f and a does not contribute significantly to the spreading

of the mean concentration.   The higher variance in f is offset by the conditioning effect of the

actual field data (which are exactly the same as in the perfect parameter case).  The higher

variance in a is still relatively low and doesn't affect the overall result significantly.
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In the opposite case with underestimated variances (Ff
2=1.2,  Fa

2=0.16) and with a very

small mean log"=-5.2 (simulation J, Figure 10.21i-m), the plume moves much faster than the

actual plume.  The unconditional mean vertical velocity is 6.8 times faster than in the previous

case I and almost twice as large as at the actual site.  But the plume moves again along the same

travel paths and with only a small decrease in plume spreading.  Since the travel paths are

essentially the same in simulations H, I, and J, the differences in plume spreading are best

compared for travel times that correspond to similar travel-distances:  Conditional simulation

H at t'=8 against I at t'=31 (to be accurate it should be t'=28) against J at t'=4.  The differences

in the plume spreading caused by erroneous assumptions about the soil variability are obvious.

Note that the different output times use different contouring levels.

Figure 10.22e-h shows the mean plume prediction from a simulation that again

overestimates the variances of f and a, but has the correct A (mean of a) and an overestimate of

F, the mean of f (conditional simulation K).  Due to the conditioning, the plume moves only

slightly faster than in the perfect parameter case (Figure 10.22a-d) and again with little extra

spreading.  Similar results are found, if the f and a parameters are estimated correctly, but the

mean soil water tension is too wet (conditional simulation L), resulting in a higher average

conductivity (Figure 10.2i-m).

These results show that conditioning not only reduces the uncertainty due to spatial

heterogeneity, but also reduces the unknown errors that arise from a limited knowledge of the

overall soil properties.  Conditioning data tend to neutralize the parameter estimation error.

With a high amount of tension data and some conductivity data, mean and variance estimation

becomes a relatively minor source of uncertainty compared to the uncertainty arising from the

spatial variability of the parameters.  The effect of uncertainty in the correlation function needs

to be explored in a future study.

10.10 Conditional Mean Displacement Variance and Conditional Moment of Inertia
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The concentration moments are a function of both space and time.  The Monte Carlo

analysis of concentration moments is therefore associated with large amounts of data storage and

data handling.  It is also cumbersome - particularly in three dimensions - to visualize the results

in an efficient manner.  The spatial moments of the solute plume i.e., the center of mass and the

moment of inertia (chapter 9), are a much more concise measure of the concentration

distribution and of the uncertainty about the plume location.  They reduce the multiple plots of

two- or three-dimensional concentration fields to a single-valued function of time.  Dagan

(1984), Rubin (1991c), and Zhang and Neuman (1994c) use the second spatial moments of the

mean solute plume to illustrate the effect of conditioning in mildly heterogeneous porous media.

They show that the second moment of the mean concentration plume decreases towards the size

of the actual plume as the number of conditioning points increases, since the spreading of each

individual plume is smaller than that of the mean plume.

In chapter 9, three measures related to the position and size of the solute plume were

introduced:  the mean vertical and horizontal spreading of each plume around its center, <Mzz>

and <Mxx>;  the variance of the  plume center displacement in the vertical and horizontal

direction, var(Mz) and var(Mx);  and the vertical and horizontal spreading of the mean

concentration plume, Xzz and Xxx, which is computed as the sum of the two former measures

(eqn. 9-3, see also Fisher et al., 1979).  Figure 10.23 shows these moments for the actual plume

at field site #28 as a function of dimensionless time t'=tVz/8fz (solid curve) with those from the

corresponding Monte Carlo simulations A (dense grid of f, a, h data; long dashed curve), H

(dense grid of h data, sparse grid of f data; short dashed curve), and G (sparse grid of h data;

dash-dotted curve), and for the unconditional simulation of this site (dotted curve).  The

dimensionless moments (indicated by an apostrophe ') are normalized by dividing the actual

moments with the product of the square of the vertical correlation scale of f and the variance of

f, ( 8fzFf
2) (see also chapter 9).

The average plume spreading <Mzz> and <Mxx> are determined primarily by the

variability and correlation scale of the soil texture (Russo, 1993a).  The moments of individual
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plumes may vary in many different ways, particularly since the spatial distributions of the solute

plumes are generally non-Gaussian for the hypothetical field sites studied here.  At site #28, the

horizontal spreading of the actual plume has a small step increase at early time t' (0.5 - 1.5)

which stems from the diagonal plume movement, and a very large increase after t'=8 to almost

8 times the value for the vertical spreading at t'=15 (Figure 10.23a,b) indicating the horizontal

plume movement observed in the map of the actual concentration distribution (Figure 10.5a-b).

The vertical spreading indicates a strong expansion-contraction cycle between t'=8 and t'=16.

Since the expansion is seen for both the horizontal and the vertical moment, there is likely an

accelerated diagonal movement of parts of the plume after t'=8 (no concentration data are

available for the time between t'=8 and t'=16 to exactly explain the anomaly in Mzz).  Curiously,

<Mzz> from simulation A shows exactly the opposite anomaly at the same time (Figure 10.23a):

a strong contraction followed by some expansion.  While the actual plume has a vertical

spreading comparable to the unconditional plume, all conditional plumes significantly

underpredict the vertical spreading of the solute.  In contrast, the conditional data improve the

prediction of horizontal spreading that occurs after t'=8 (Figure 10.23b).  At earlier times, the

horizontal spreading predicted is very similar for all three types of conditioning and for the

unconditional simulation.

The variance var(Mz) of the vertical displacement of the plume center decreases

significantly as the number of data increases (Figure 10.23c).  The unconditional simulation has

a very large center displacement variance, much larger than the average spreading <Mzz> of the

individual plumes. For t'<7 the horizontal center displacement variance var(Mx) also decreases

(Figure 10.23d).  However, due to the strong horizontal spreading of the mean plume after t'=7,

the conditional  horizontal  plume spreading increases  with the number of  conditioning points,

and so does var(Mx).  At t'>12 var(Mx) is larger in conditional simulation A than in the

unconditional simulation.

From those results it follows that the vertical spreading Xzz of the mean plume (Figure

10.23e), which is the sum of the average plume spreading and the plume center displacement
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variance, shows - for most parts - the expected decrease as the number of conditioning points

increases.  The decrease in Xzz stems mainly from the decrease in the plume center displacement

variance var(Mz).  But due to the difference between <Mzz> and the actual vertical spreading of

the field plume, Xzz becomes smaller than that of the actual plume for conditional simulation A

at t'>8.  For the horizontal Xxx, the results are ambiguous at early time (t'<8).  Only at later times,

Xxx comes closer to the actual horizontal plume spreading as the number of conditioning points

increases.  Due to the strong horizontal spreading of the actual plume, the horizontal spreading

of the mean plume actually increases with the number of conditional data available (t'>8).

Although not shown, it is found that the spatial moments obtained from the conditional mean

concentration plume are in good agreement with the sum Xii =  <Mii> + var(Mi) (Figure

10.23e,f).

Overall the results indicate that the plume moments do not very accurately reflect the

prediction improvement as demonstrated by the conditional concentration moments in previous

sections.  The discrepancy between the quality of the moment prediction and the amount of

conditional data invested is caused primarily by the non-Gaussian shape of the plume.  Multiple

peaks, meandering,  parting of the plume  and many other particular features of solute plumes

in moderately to highly variable soils cannot be characterized by the spatial moments of the

plume.  The larger the plume deviates from the Gaussian shape the less information is contained

in the first and second moment, since it becomes very sensitive to the particular distribution of

the plume i.e., to higher order spatial plume moments.  This explains why the increase in

conditioning points does not necessarily improve the accuracy of the moment prediction.

In soils with a less variable flow field,  the spatial concentration distribution is much

closer to the Gaussian form, and hence the above three measures of plume spreading are

increasingly helpful in describing the actual contribution of conditioning i.e., in describing the

actual plume movement.  This is demonstrated in the spatial analysis of the concentration

distribution at site #12 (Figure 10.24), which has an only moderate variability in the unsaturated

hydraulic conductivity (Fy
2 = 0.5).  But even here it is seen that at different times, the accuracy
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of the predictions  do not necessarily reflect the degree of conditioning  (e.g. the prediction of

Xxx in Figure 10.24f at time t'=5).   This is consistent with findings of Zhang and Neuman

(1994c).

In soils with flow fields that are even more variable than at site #28, the value of using

spatial moments of the concentration distribution to assess the plume movement via conditional

simulation becomes questionable due to the highly irregular shape of the actual solute plume,

as demonstrated for site #21 (Figure 10.25), where Fy
2 = 3.2.

10.11 Conditional Local Solute Travel Time

From a regulatory point of view,  the spatial distribution  of solute concentration is in

many cases not as much of interest as the arrival time distribution of the solute at some

compliance surface.  For transport through the unsaturated zone, the compliance surface is

mostly the aquifer water table, since the aquifer rather than the soil itself is the resource that is

protected under many environmental regulations.  In this section the focus is the solute flux

breakthrough at a certain depth below surface as a function of time and location on the

compliance surface.  In the two-dimensional simulations the compliance surface reduces to a

horizontal compliance axis (CL).  The compliance axis in all simulations is located across the

center of the two-dimensional, vertical simulation domain (z/8fz = 11.6).  In chapter 9, two

measures to characterize solute breakthrough at each horizontal location x of the CL were

introduced:  The time tp of arrival of the peak solute flux and the time ta of first exceedance of

a certain compliance solute flux.

Figure 10.26 shows the peak time of solute flux at the field site and the mean and

variance of the peak time obtained from the conditional and unconditional MCSs.  The vertical

time axis is normalized by the mean unconditional travel time t = Vz/z where z is the distance

from the source to the compliance surface directly underneath the source.  At the field site, the

main features of solute breakthrough are two areas of relatively fast breakthrough i.e., early peak
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solute flux time, at x.-200 cm and at 400cm < x < 1000 cm (horizontal distances are measured

with respect to the point directly under the solute source).  This corresponds to the two

advancing fronts of the solute plume seen in Figure 10.5 at t'=8 and t'=16.  Prediction of these

two distinct and quickly advancing fronts would seem critical for regulatory purposes.

None of the conditional simulation predicts an advancement of peak travel time as fast

as it actually  occurs at the field site.   The best predictions are  by conditional simulation A,

which predicts peak concentrations of the two advancing fronts to occur approximately 10%

later.  Peak times at other locations of the compliance axis are estimated conservatively by

simulation A.  Conditional simulation H (dense head data, sparse f data) predicts peak arrival

generally later  than A and  shows much less distinction for  the two advancing fronts.

Conditional simulation G (sparse head data) makes a better distinction between the two

advancing fronts and gives a fairly accurate prediction of the location of breakthrough of these

fronts, but at later  time than the other two  conditional simulations.  The variance of the peak

time increases with less conditional data due to the increase in concentration variance seen

previously.  Between simulation A and the unconditional simulation, the difference in variance

is approximately a factor 2 near the center of the compliance axis.

A more detailed picture of solute breakthrough is given by the arrival time ta or first

exceedance of the compliance solute flux s/s0.  In Figure 10.27 these times are mapped for

various compliance solute flux levels.  The lowest s/s0 levels are first exceeded i.e., arrive first.

The white area outside the plume indicates that the compliance level was never exceeded (see

chapter 9).  The advancement of the two split fronts of the solute plume is again seen in the map

for the field site:  The arrival time of all but the highest s/s0 levels is much earlier at -200 cm <

x < 0 cm and 400 cm < 600 cm than at x = 200 cm.   Conditional simulation A is the only

simulation that reproduces a similar split pattern.  But even for this high data density, the arrival

times of any particular s/s0 level is underestimated by approximately 20%.  Also, at most lower

s/s0 levels, the conditional simulation predicts an earlier breakthrough of the left front when

compared to the right front, while in reality the opposite is true.  The distinction between two
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advancing fronts is entirely lost in the other conditional simulations, which show the arrival time

of any s/s0 level to be the shortest to the left of the center of the compliance axis, and then longer

the further away from the center.  The unconditional simulation has the largest error in

predicting the arrival time of s/s0 levels due to the fact that the actual plume moves overall faster

than the average velocity.  Again the variance increases for less conditioning data.

Much of the insensitivity of the travel time moments may be due to the particular

location of the compliance surface at field site #28:  It coincides with the region of strong

horizontal movement, which is well predicted with simulation type A, but less explicit and at

slightly different locations with simulation types G and H.  At field site #21, the compliance

surface coincides with strong vertical solute movement on the left site of the center of the

compliance line.  In this case, a much higher sensitivity of the solute arrival moments e.g., the

mean arrival time ta of s/s0 is found, although the soil flux is much more variable.

In summary, the mapping of the two time parameters to characterize the solute flux

breakthrough as a function of  location on the  compliance axis may not nearly be as sensitive

to conditioning as the  local concentration moments are.  If strong horizontal flux occurs at or

near the compliance surface, the results of the travel time analysis may be very vague.  Ideally

the compliance surface should be located such that solute flux is known to be predominantly

normal to the compliance surface.   Otherwise the effect of conditioning may only be weak in

the arrival time of certain solute flux compliance levels or the peak concentration.  While

conditioning works  well to predict  the general spatial  distribution of the concentration, this

shows that it may be less effective for  predicting solute flux arrival times or breakthrough

curves, since the amount of data necessary to predict these accurately can under circumstances

be enormous.  And depending on the flux pattern across the compliance surface, the

improvement in the mean  time predictions due  to sparse conditioning may  be relatively small

or very significant.

10.12 Conditional Integrated Solute Breakthrough Curves
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Given that the local  breakthrough curves are not necessarily sensitive to conditioning,

the question arises whether the integrated solute breakthrough curve (BTC) is similarly

insensitive.  The solute breakthrough curve represents total mass flux across the compliance

surface at any given time.  The data are compiled not only at the compliance surface in the

center of the domain, but also at every other quartile of the domain depth (1/4 depth or 5.48fz

travel distance, 3/4 depth or 17.88fz travel distance, and bottom boundary or 23.88fz travel

distance).  The actual breakthrough curve at field site #28 is plotted against the mean

breakthrough curves of the conditional simulations A, H, G, and the breakthrough curve of the

unconditional simulation (Figure 10.28a-d).  The mean breakthrough curves clearly show the

effect of conditioning, particularly at the two top compliance axes (Figure 10.28a,b).  At those

two levels, the actual plume BTC has an almost Gaussian shape, and increasing the data density

leads to less dispersed mean BTCs in the conditional simulation with the result that the peak

concentration is much better predicted if more data are used for conditioning.  At the 3/4 depth

and the bottom of the simulation domain,  the BTC of the actual  plume significantly deviates

from the Gaussian shape due to the very heterogeneous shape of the solute plume.  The

conditional breakthrough curves give results of variable accuracy,  which cannot be related to

the number of conditioning points (Figure 10.28c,d).  This is not surprisingly similar to the

insensitivity of the spatial plume moments at later time, since the temporal plume moments are

related to the spatial plume moments and suffer from similar disadvantages.  Note that the

variance of the breakthrough curves nevertheless decrease as the number of conditioning points

increases (Figure 10.28e-h).  Also, as the number of conditioning points increases, the time span

of high standard deviations of the BTC decreases.  This indicates that the while the prediction

about the average solute flux at a given time does not necessarily improve with the amount of

data used for conditioning,  the uncertainty about the prediction  decreases almost always.

Similar observations are made for field site #21 (Figure 10.30).  In contrast, the effect of

conditioning is very obvious  in the mean BTCs for the moderately heterogeneous site #12

(Figure 10.29) as found by other researchers in the past (Smith and Schwartz, 1981b;  Gutjahr
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et al., 1994;  Zhang and Neuman, 1994c).

10.13 A Deterministic Geostatistical Inverse Approach in Comparison

It may be argued  that with a reasonable  amount of information - such as that in

sampling scheme A - the stochastic  technique is superfluous  and a reasonable prediction can

be made through deterministic approaches alone.  This argument may be appropriate if one is

interested in a prediction of solute transport without an estimation of the associated uncertainty.

With deterministic modeling uncertainty cannot be quantified.  If a model is only needed to give

an  approximate  prediction of   the  solute  plume  movement,  methods other  than  the

stochastic technique should be considered.

By generating a zero variance unconditional realization of f and a and by assuming that

all other pertinent  statistical moments are known  (F, ', covf, cova, covh, ccovfh, ccovah, where

cov is the covariance  and ccov is the cross-covariance),  the conditional  simulation algorithm

of section 10.3 (Figure 10.1) reduces to the geostatistical inverse modeling approach described

similarly for saturated groundwater flow by Neuman and Yakowitz (1979), Kitanidis and

Vomvoris (1983):   The measurements of f,  a, and h are used to estimate the remaining

unknown f and a data in the simulation grid through the linear, unbiased, cokriging estimator

introduced earlier.  The steady-state head solution and solute transport is then computed for the

cokriged f and a field.   The geostatistical inverse  modeling technique is only one of several

other indirect inverse modeling techniques (Schweppe, 1973; Neuman and Yakowitz, 1979;

Carrera and Neuman, 1986;  Peck et al., 1988).

The geostatistical inverse approach  (cokriging) is applied  to field site #28 given the

same data as used for the conditional simulation A of that site.  Since the measured data density

is relatively exhaustive,  the f and a parameter estimation is associated with only small errors

(see section 10.5).  Like any random realization of the conditional simulation A (section 10.6),

the concentration distribution predicted from the geostatistical inverse model is a very good
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approximation of  the overall plume  movement (compare Figures 10.31e-h, 10.31i-m).  The

solute plume predicted by the inverse model is less dispersed than the conditional mean solute

plume since it is not an average concentration.  It is also less dispersed than the actual plume,

since the underlying parameter fields for  f,  a, and h are subject to minimal perturbation given

the conditional data.  A less tortuous travel path and a mass balance error in the transport

simulation of up to +13% lead to higher predicted peak concentrations in the inverse model than

observed at the field site.
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10.14 Summary and Conclusions

A number of studies presented in the literature analyze the uncertainty associated with

predicting transport of solutes in heterogeneous unsaturated soils.  Both analytical and numerical

models have been developed to address this issue.  But without exception in situ measurement

data have not been incorporated in the stochastic analysis except to determine the unconditional

parameters of the statistical models that describe soil heterogeneity.  Neither has any study to

date taken advantage of the available in situ information for soil water tension or other data

indirectly related to the soil textural heterogeneity (indirect data) to reduce the prediction

uncertainty associated with the unconditional stochastic approach to modeling solute transport.

Most recently, Neuman and Loeven (1994) have introduced a new approach that allows one to

derive the conditional moments of the soil water tension, soil water content, and soil water flux.

But the approach has not yet been applied to also derive conditional concentration moments.

With the conditional approach developed in this work a model is provided to compute the spatial

distribution of estimation errors associated with solute transport predictions subject to in situ

data measurements of either direct data (Ks and/or ") or indirect data (soil water tension) or a

combination of both.

The difficulties that have prevented conditional simulation of nonlinear unsaturated flow

and transport in  the past are  overcome by introducing  an approach called conditional

ASIGNing.  The method is based on the ASIGNing technique (Harter and Yeh, 1993;  chapter

7), which generates not only unconditional random fields of f and a, but also an approximate

linearized solution hL to accelerate the CPU-time for the finite element solution h of Richards

equation.  In this chapter, the ASIGNing method  is combined with the geostatistical approach

in general  (Matheron, 1971;  Journel, 1974;  Delhomme, 1979) and cokriging in particular

(Myers, 1982;  Carr and Myers, 1985).  The key to the efficiency of the new conditional

simulation algorithm is the use of the first order perturbation approach described in chapters 4

and 7 to compute an unconditional  head random field hL that is  approximately consistent with
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the unconditional  random fields f and a.   hL is an intermediate  result in the conditioning

algorithm (Figure 10.1).  The hL field is necessary to condition the corresponding f and a

realizations (eqn. 10-1)  on soil water tension data and to construct a geostatistical estimate of

the conditional soil water tension realization hL
c as initial estimate to again accelerate the CPU-

time for the finite element solution hc of Richards equation.  Although the linearized, first order

head solution is only an approximation of h, the results indicate that its application in the

conditioning process is justified since the conditional moments of f c and a c are also linear

estimates (cokriged estimates).  Like other (linear) conditional algorithms conditional ASIGNing

does not lead to  solutions hc of the  flow equation (given the conditional f c and a c)  that

perfectly honor the  measured head  data.   But the conditional  variance of the  head at  the

measurement points are at the most 5%-10% of the unconditional head variance.  Forcing the

correct heads at the points of measurement by imposing internal boundary nodes would lead to

ill-conditioned gradient and velocity fields.

In this chapter, conditional ASIGNing has successfully been applied to the Monte Carlo

simulation of  conditional stochastic  transport in a number of  hypothetical soil  types with

varying degrees of textural variability, anisotropy, and moisture content.  Conditional moments

were analyzed not  only of the spatial distribution  of the concentration  mean and variance at

time t, but also of the overall plume spreading and of the arrival time of the solute as measured

by a number of different parameters such as the solute breakthrough curve at a hypothetical

compliance surface.  In summary of the Monte Carlo simulation (MCS) results I have the

following conclusions:

From a numerical-technical point of view,  conditioning even on a  few indirect data is

an important tool to eliminate some of the most unlikely possible plume travel dynamics in the

Monte Carlo sampling procedure.   Most importantly,  conditioning on either direct or indirect

data at the source  removes the outlier problem in unconditional  Monte Carlo simulations of

highly heterogeneous soils.  Outliers of concentration levels occur near the source due to

sometimes extremely low conductivities at or near the solute source.  Outliers of permeability
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values far from the source are generally no problem, since the travel path of the plume avoids

such stagnant areas.   Conditioning on near source  information greatly reduces the risk of

outliers that may bias the sample statistics.  In addition, less realizations are necessary per MCS

to achieve the same level of sample moment accuracy due to the decrease in the ensemble

variability.  Conditional simulations are therefore computationally less expensive than

unconditional simulations, although additional CPU time is needed for the conditioning of each

realization.   In this analysis, 150 conditional realizations gave very accurate sample estimates,

if either h or f or both are measured in a dense grid.  If only sparse sampling data are available,

the number of realizations was increased to 300, the same number as in the unconditional

simulations (chapter 9).

The most important difference between unsaturated and saturated conditioning is the

physical nature of unsaturated hydraulic conductivity,  which is not an independent property of

the soil, but determined by the soil water content and soil water tension and by a number of

textural properties of the soil.   The unsaturated conductivity  cannot be conditioned directly

unless it is measured in situ. It is here assumed to be dependent on two parameters besides the

soil water tension h,  which are often measured at different locations.  If both parameters f=logKs

and a=log" of the K(h) function (4-8) are known at one location, and if the soil water tension

is measured nearby (0.25 8f), then the conditional variance of the unsaturated hydraulic

conductivity reduces to  almost negligible values.   But if a is not measured,  the uncertainty

about K at the f measurement points may be significantly larger depending on the mean and

variance of a and depending also on the mean soil water tension.

In this study it is assumed that unsaturated steady-state flow occurs under unit gradient

conditions with the  major anisotropy axis transverse  to the mean flow direction.  The steep

mean gradient and the  transverse anisotropy have a stabilizing effect on the flow pattern.

Hence,  for anisotropic soils with moderately heterogeneous flow (Fy
2 < 1) the assumption of

one-dimensional vertical flow (parallel column model) is mostly justified.  In such soils the

unconditional simulation approach yields results that are a relatively good approximation of the
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actual plume even if the plume is from a small source (provided the source location is known).

The uncertainty about the solute plume movement is reduced primarily to uncertainty about the

vertical travel velocity.   Since moderately variable flow is mostly restricted to wet soils, the

travel velocity is strongly  correlated with  the saturated  hydraulic conductivity.   Conditioning

on f will therefore reduce uncertainty more than conditioning on a or h.  In moderately

heterogeneous, anisotropic soils conditioning on head data alone will not significantly improve

the unconditional prediction of solute transport.

In soils with strongly heterogeneous, anisotropic flow fields (Fy
2$1) i.e., in very

heterogeneous soils or in dry soils, the travel path significantly deviates from the vertical

direction and is characterized by a significant amount of horizontal displacement and tortuosity.

In isotropic soils, similar observations are made even for moderately heterogeneous flow fields

(Fy
2>0.5).  Solute plumes of small initial lateral dimensions (0.38) are found to have multiple

peaks,  multiple fronts, and are generally of a very erratic shape.  With the unconditional

stochastic transport approach, the uncertainty about the plume movement in both the horizontal

and vertical direction leads to very large mean concentration plumes (see chapter 9).  While an

unreasonable amount of data would have to be retrieved from the soil to accurately predict the

solute movement in such highly heterogeneous soils, conditioning on either a few indirect or a

few direct data will significantly improve the prediction of the mean concentration plume and

reduce the prediction uncertainty as measured by the spatial distribution of concentration mean

and concentration coefficient of variation.

The information content (i.e., the ability to reduce uncertainty in a conditional

simulation) of f alone decreases not only with increasing heterogeneity but also as the soil dries

out, particularly  if the  mean and  variability of a is  large and if a is  not strongly  correlated

with f.  Then the information content of the head becomes important for two reasons:  The

spatial distribution of the head carries information about the head gradient field in the soil and

therefore about the travel path of a solute plume.  Secondly, soil water tension data help to better

estimate the unsaturated hydraulic conductivity, which controls both travel velocity and travel
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path.  Hence, in soils with highly variable flow fields, conditioning with head data significantly

reduces transport prediction uncertainty despite the fact that the conditioning technique itself

relies on a strong linearization of the physical process,  which becomes less valid as the flux

variability increases (Kitanidis and Vomvoris, 1983).  In very heterogeneous soils it appears that

soil water tension data reduce the solute movement prediction uncertainty (as measured by the

minimum CVc) more than the same amount of saturated hydraulic conductivity data.  The

positive effect of head conditioning in very heterogeneous porous media was also observed for

saturated groundwater flow (Gutjahr et al., 1994).

This is a very encouraging result since the cost of equipment and labor associated with

soil water tension data is generally lower than that associated with obtaining saturated hydraulic

conductivity data.  It is more likely to find in situ head data than to find in situ information about

the saturated hydraulic conductivity.  The simulations suggest that a combined network with a

relatively high sampling/monitoring rate for soil water tension and a relatively sparse

sampling/monitoring rate for saturated hydraulic conductivity leads to a significant decrease in

prediction uncertainty about the concentration.  From the examples in this study it appears that

the combined uncertainty reduction due to a combination of h and f data is beyond the additive

impact of head data by themselves and f data by themselves.

The minimum concentration coefficient of variation CVc is used as a summary measure

of the conditioning effect on uncertainty reduction.   The changes in the minimum CVc appear

to be approximately consistent with the visual changes on the concentration maps.  Future

research must address the question of converting the large amount of information about c(x,t)

into other representative parameters.  In this context I would also like to point out that an exact

definition and quantification of the term "uncertainty"  is very difficult, an issue that should be

addressed in future research.

The spatial moments  of the mean concentration plume are another example of a

compact measure to study the impact  of conditioning  on solute transport in heterogeneous

porous media (Dagan, 1982, 1984;   Rubin, 1991a; Zhang and Neuman, 1994c).   The analysis
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of the spatial moments of solute plumes in moderately variable flow fields indicated that

conditional data primarily reduce the uncertainty about the center of the plume.  The uncertainty

about the mean spreading of the solute plume is fairly small and the spatial distribution of the

actual solute concentration is not much unlike a Gaussian plume.  In mildly to moderately

heterogeneous, anisotropic soils, conditional spatial moments of the mean solute plume and

conditional mean breakthrough curves therefore accurately reflect the effect of conditioning on

the solute transport prediction.  In strongly heterogeneous flow fields, however, and in isotropic

soils with moderate heterogeneities, the significance of the spatial moments of the conditional

mean plume is  strongly diminished  due to the erratic  (non-Gaussian) shape both of the

individual solute  plume realizations and  of the mean solute plume.   It becomes therefore

difficult to quantitatively assess the effects of conditioning by analyzing the spatial solute plume

moments alone.

Similarly, the effect  of conditioning on the  arrival time or breakthrough of a solute at

a compliance surface or compliance point some distance away from the solute source is often

felt much less  direct than in the  spatial pattern of the  conditional mean concentration, if the

flow patterns are strongly heterogeneous.  While a significant decrease is found in the variance

of these measures, the actual shape of the conditional mean breakthrough curve (locally and

integrated) may or may not be similar to the actual breakthrough curve, even with a dense

sampling grid for f, a, and h.  If the solute flux across the compliance surface is not

predominantly normal to the surface,  the mean solute  flux and arrival time become very

sensitive to small changes in the conditional mean flow field, and the effect of conditioning

becomes ambiguous.  It therefore appears that the conditional simulation of breakthrough curves

in highly heterogeneous porous media must be accompanied by the concentration mean and

variance maps to help explain what is seen in the breakthrough curve and to evaluate the effect

of conditioning on the breakthrough.  Breakthrough curves of solute transport from small

sources in strongly heterogeneous soils should therefore not be expected to be very accurate,

even when the amount of conditional data is large.
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Besides spatial heterogeneity, the estimation of the statistical parameters f, a, and h and

the associated estimation error introduces additional uncertainty into the solute transport

prediction.  The impact of parameter uncertainty is found to diminish with the amount of data

available in situ, because of reduced sampling error and more constraints on the stochastic

simulation.  Parameter uncertainty about the variance of f and a is mainly responsible for

increasing the overall spreading of the mean plume.  In contrast, errors in the sample mean of

f, a, and h result in an error about the mean flux prediction and consequently the error will be

not in the travel path of the plume, but merely in the travel time.  Overall, however, it appears

that the uncertainty of the solute transport prediction arising from soil heterogeneity is much

more significant than the uncertainty arising from parameter uncertainty.

In this study, several simplifications are made not only to be able to compare numerical

with analytical solutions  (see chapters 8 and 9),  but also to be able to establish some

fundamental relationships  between monitoring/sampling network and the heterogeneity of the

soil.  Future work must address the effect of variable moisture content and transient flow

conditions.  Measurement errors, parameter estimation errors, particularly about the correlation

structure, and error in assuming the wrong models describing the K(h) and h(2) relationship

further increase prediction uncertainty and should be addressed in future research.  Thus, it may

be expected that the effects of conditioning become smaller.  The geostatistical conditional

simulation model must be recognized not to be a perfect measure of uncertainty itself, because

it is based on  a linearization  of a nonlinear  physical problem  (see section 10.2 and 10.3) and

on several important assumptions  about the  concept of spatial variability in soils (see chapter

2).  A field validation of the conditional stochastic approach suggested here is therefore

necessary.  However, the model is based on statistical concepts, and it seems at this time

impossible to implement such a field validation rigorously, because many field experiments

(samples)  would be needed to judge about the goodness of the stochastic model.

From a practical point of view,  the results are  both encouraging and disappointing.

They are encouraging in that they show that with less computational effort than in the classic
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unconditional approach, and with data that are relatively simple to obtain in situ (soil water

tension), the uncertainty about the predicted plume movement in space can be drastically

reduced, particularly for applications to highly heterogeneous soils.  It is encouraging also in that

the conditional mean concentration predictions are pinpointing to areas where the plume

displacement significantly differs from the typical downward movement.  This helps to identify

locations from which additional data may be taken.  If the unsaturated flow field is very

heterogeneous conditioning on a few indirect or direct data will greatly improve the stochastic

predictions associated with unconditional simulation and with macrodispersion analysis (see

chapter 9).  But the results are discouraging in that the simulations have shown how difficult it

is to describe the (conditionally simulated) plume movement in highly heterogeneous soils by

simple measures such as the spatial moments of the mean solute plume or the minimum

concentration coefficient of variation.  The study has also underlined the difficulty of predicting

solute breakthrough at some compliance depth even when conditioning on a high density of

direct and indirect data.   Further research needs to be done to address these disadvantages.  It

appears from the results presented in this chapter that even with an enormous amount of field

sampling it will be very difficult to predict every detailed aspect of solute transport in

moderately to highly heterogeneous soils, particularly the prediction of very low levels of solute

concentration either in front of an advancing contamination plume or as residual. 
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Classification of the conditional simulation types.  Conditional simulations A through
H are based on different sampling networks for the parameters f, a, and h. 
Simulations I through L are applied to field site 28 only toa assess the effect of
erroneous statistical iput parameters.

conditional
simulation type

sampling
density

f

sampling
density

a

sampling
density

h

A dense dense dense

B dense - dense

C dense - -

D sparse sparse -

E sparse  sparse dense

F - - dense

G - - sparse

H sparse - dense

I (as H) but:
(Ff

2 = 1.8,
FF

2 = 0.24,
<log"> = 4.0)

J (as H) but:
(Ff

2 = 1.2,
FF

2 = 0.16,
<log"> = 5.2)

K (as H) but:
(Ff

2 = 1.8,
FF

2 = 0.24,
F = 0.5

L (as H) but:
(H = -140 cm)

Table 10-1



Harter Dissertation - 1994 - 373

F
ig

u
re

 1
0

.1

S
ch

em
at

ic
 o

ve
rv

ie
w

 a
n

d
 f

lo
w

-c
ha

rt
 o

f 
co

n
d

it
io

n
al

 s
im

u
la

ti
o

n
 i

n
cl

u
d

in
g 

co
n

d
it

io
n

al
 A

S
IG

N
in

g.



Harter Dissertation - 1994 - 374

F
ig

u
re

 1
0

.2

A
ct

u
al

 f
ie

ld
 s

it
e 

#
2

8
 (

a-
d

),
 c

o
n

d
it

io
n

al
 s

im
u

la
ti

o
n

 A
 (

e-
h

),
 a

n
d

 c
o

n
d

it
io

al
 s

im
u

la
ti

o
n

 G
 (

I-
m

)

fo
r 

th
e 

p
ar

am
et

er
s 

lo
gK

 (
a,

e,
i)

, 
h

 (
b

,f
,k

),
 v

x  (
c,

g,
l)

, 
an

d
 v

z  (
d

,h
,m

).
  

C
o

n
to

u
r 

la
b

el
s 

ar
e

id
en

ti
ca

l 
th

ro
u

gh
o

u
t 

ea
ch

 r
o

w
.



Harter Dissertation - 1994 - 375

F
ig

u
re

 1
0

.3

F
ie

ld
 s

it
e 

#
2

8
 (

le
ft

) 
an

d
 v

ar
ia

n
ce

s 
fo

r 
co

n
d

it
io

n
al

 s
im

u
la

ti
o

n
 A

 (
ce

n
te

r)
 a

n
d

 G
 (

ri
gh

t)
.



Harter Dissertation - 1994 - 376

F
ig

u
re

 1
0

.4

C
o

n
d

it
io

n
al

 s
im

u
la

ti
o

n
 t

yp
e 

G
 -

 C
o

n
d

it
io

n
al

 m
ea

n
 (

d
as

h
ed

 l
in

e)
 a

n
d

 a
ct

u
al

 (
so

li
d

 l
in

e)
 s

o
il

 w
at

er
 t

en
si

o
n

 a
lo

n
g 

th
e

th
ir

d
 o

f 
th

re
e 

te
n

si
o

m
et

er
 n

es
ts

 f
o

r 
th

re
e 

d
if

fe
re

n
t 

fi
el

d
 s

it
es

. 
 T

h
e 

ve
rt

ic
al

 l
o

ca
ti

o
n

 o
f 

th
e 

te
n

si
o

m
et

er
 d

at
a 

ar
e

in
d

ic
at

ed
 b

y 
d

o
tt

ed
 l

in
es

. 
 F

ie
ld

 s
it

e 
#

2
8

 a
n

d
 #

1
2

 a
re

 w
et

 s
o

il
s 

w
it

h
 h

ig
h

 a
n

d
 m

o
d

er
at

e 
va

ri
ab

il
it

y 
in

 l
o

gK

s ,re
sp

ec
ti

ve
ly

. 
 F

ie
ld

 s
it

e 
#

1
5

 i
s 

a 
d

ry
 s

o
il

 w
it

h
 s

im
il

ar
 t

ex
tu

ra
l 

va
ri

ab
il

it
y 

as
 s

it
e 

#
1

2
, 

b
u

t 
a 

h
ea

d
 v

ar
ia

n
ce

 c
o

m
p

ar
ab

le
to

 s
it

e 
#

2
8

.



Harter Dissertation - 1994 - 377

F
ig

u
re

 1
0

.5

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 378

F
ig

u
re

 1
0

.6

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 379

F
ig

u
re

 1
0.

7

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 380

F
ig

u
re

 1
0

.8

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 381

F
ig

u
re

 1
0

.9

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 382

F
ig

u
re

 1
0

.1
0

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 383

F
ig

u
re

 1
0

.1
1

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 384

F
ig

u
re

 1
0

.1
1

(c
o

nt
in

u
ed

, s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 385

F
ig

u
re

 1
0

.1
2

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 386

F
ig

u
re

 1
0

.1
2

(c
o

n
ti

n
u

ed
, 

se
e 

se
ct

io
n

 1
0

.6
.1

 f
o

r 
ex

p
la

n
at

io
n

s)
.



Harter Dissertation - 1994 - 387

F
ig

u
re

 1
0

.1
3

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 388

F
ig

u
re

 1
0

.1
4

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 389

F
ig

u
re

 1
0

.1
5

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 390

F
ig

u
re

 1
0

.1
6

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 391

F
ig

u
re

 1
0

.1
7

(s
ee

 s
ec

ti
o

n
 1

0.
6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 392

F
ig

u
re

 1
0

.1
8

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 393

F
ig

u
re

 1
0

.1
9

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 394

F
ig

u
re

 1
0

.2
0

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 395

F
ig

u
re

 1
0

.2
1

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 396

F
ig

u
re

 1
0

.2
2

(s
ee

 s
ec

ti
o

n
 1

0
.6

.1
 f

o
r 

ex
p

la
n

at
io

n
s)

.



Harter Dissertation - 1994 - 397

Figure 10.23 Average moment of inertia of individual plumes (a,b), variance of the plume

center of mass (c,d), and moment of inertia of the mean plume (e,f) in the

vertical (left column) and horizontal dimension (right column).  All moments

are normalized (‘) by (8fz Ff
2).
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Figure 10.24 Average moment of inertia of individual plumes (a,b), variance of the plume

center of mass (c,d), and moment of inertia of the mean plume (e,f) in the

vertical (left column) and horizontal dimension (right column).  All moments

are normalized (‘) by (8fz Ff
2).
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Figure 10.25 Average moment of inertia of individual plumes (a,b), variance of the plume

center of mass (c,d), and moment of inertia of the mean plume (e,f) in the

vertical (left column) and horizontal dimension (right column).  All moments

are normalized (‘) by (8fz Ff
2).
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Figure 10.28 Normalized mean breakthrough curve <S’(t’)>, and standard dev. of the

breakthrough curve st.d.(S’) at different depth: 5.48fz (top row), 11.68fz (second

row), 17.88fz (third row), and 23.88fz (bottom row).  The breakthrough curve for

the field site is only plotted in the left column.
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Figure 10.29 Normalized mean breakthrough curve <S’(t’)>, and standard dev. of the

breakthrough curve st.d.(S’) at different depth: 5.48fz (top row), 11.68fz (second

row), 17.88fz (third row), and 23.88fz (bottom row).  The breakthrough curve for

the field site is only plotted in the left column.
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Figure 10.30 Normalized mean breakthrough curve <S’(t’)>, and standard dev. of the

breakthrough curve st.d.(S’) at different depth: 5.48fz (top row), 11.68fz (second

row), 17.88fz (third row), and 23.88fz (bottom row).  The breakthrough curve for

the field site is only plotted in the left column.
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