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8.  STOCHASTIC ANALYSIS OF STEADY-STATE

FLOW IN HETEROGENEOUS UNSATURATED SOILS

VIA INTENSIVE MONTE CARLO SIMULATION

8.1 Introduction

Spatial heterogeneity of soil textural properties causes a potentially high degree of

variability in the soil moisture flux.  In general, the amount of field information that is available

to understand or predict moisture flux in the heterogeneous unsaturated zone is limited.

Consequently,  the modeling of infiltration  events and of soil moisture transport  to the water

table is associated with uncertainty.  In many applications quantification of the uncertainty by

stochastic analysis is necessary to assess certain hazards or risks.  Statistical models enable us

to quantify the average soil textural properties, their variability, and their spatial correlation

(chapter 2).  They are utilized as input for the stochastic analysis of the physical principles

governing soil moisture movement.  Stochastic analysis provides a statistical description of the

variability of soil moisture movement.

Over the past two decades field studies at numerous sites have been used to determine

statistical models  for describing the variability of soil texture,  saturated and unsaturated

hydraulic conductivity, soil moisture content,  and soil water tension  (Ahuja et al., 1984;

Anderson and Cassel, 1986; Burden and Selim, 1989;  Byers and Stephens, 1983;  Cameron,

1978;   Ciollaro and Comegna, 1988;   Field et al., 1984;   Greenhotlz et al., 1988;  Greminger

et al., 1985;   Hopmans et al., 1988;   Lauren et al., 1988;  Mulla, 1988;   Naney et al., 1988;

Nielsen et al., 1973;  Russo et al., 1981;  Russo, 1984;  Saddiq et al., 1985;  Smettem, 1987;

Vieira et al., 1981;  Wagenet and Addiscott, 1987;  Wierenga et al., 1989).  The basic tenet of

these field  studies has been that the soil hydraulic parameters,  which relate unsaturated

hydraulic conductivity to soil moisture content and soil water tension, may vary by orders of

magnitude over very short distances (decameters to meters).  They are best characterized by a
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lognormal probability density function (White and Sully, 1992).  The variability in soil moisture

content  and in soil water tension  (here generally referred to as suction head or simply 'head')

has been found to be very significant with coefficients of variation that often exceed 70%.

This chapter is concerned with the stochastic analysis of these spatially variable field

properties.   In the stochastic context, the spatially variable physical properties are referred to

as random field variables (RFVs, see section 2.5.1) to emphasize that they are not deterministic

but described by a probability density function (pdf) (see chapter 2).   The stochastic analysis

here focuses on characterizing the mean, variance, and covariance of the dependent RFVs K

(unsaturated hydraulic conductivity), head h, and moisture flux v as a function of the two RFVs

Ks (saturated hydraulic conductivity) and " (soil pore size distribution parameter).  The physical

equations relating Ks  and " to K, h,  and v are the  exponential unsaturated hydraulic

conductivity model by Gardner (1958) (eqn. 4-8), the governing unsaturated flow equation

(Richards equation, eqn. 4-1), and Darcy's law (eqn. 4-2) (see chapter 4).

In the past, several approaches have been suggested for the stochastic analysis of

unsaturated flow problems.  These approaches are either based on purely analytical methods or

on numerical computer models.  Analytical methods (Yeh et al., 1985a,b;  Mantoglou et al.,

1987a,b,c;  Yeh, 1989;  also see chapter 4) offer the advantage of providing general

mathematical solutions (in form of equations) and an explicit insight into the interdependencies

of the statistical parameters for the RFVs Ks, ", K, h, and v.  Analytical solutions are limited,

however,  to quasi-infinite  soils of mild to  moderate variability  (Fy
2<1, y=logK;  log refers to

the natural logarithm).   In contrast, the numerical stochastic analysis of unsaturated flow

provides almost unlimited flexibility in designing  the model to match with the  particular

conditions at a field site or to address particular  problems of fundamental interest that are

difficult to address analytically (Ababou, 1988;  Hopmans et al., 1988;  Ünlü et al., 1990;

Polmann et al., 1991;  Russo, 1991).  The Monte Carlo technique is particularly attractive, since

no stationarity assumptions are needed (Hopmans et al., 1988).  Monte Carlo simulations are

common in the stochastic analysis of groundwater flow and transport problems (e.g. Freeze,
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1975;  Delhomme, 1979;  Smith and Freeze, 1979; Smith and Schwartz, 1980, 1981a,b;  Clifton

and Neuman, 1982;  Rubin, 1990;  Rubin, 1991a,b). The flexibility, however, comes at the

expense of rigor and - more importantly - at the expense of potentially enormous computational

costs.   Single numerical solutions  of the nonlinear,  heterogeneous flow problem  and in

particular the steady-state  solution are expensive to obtain,  let alone multiple solutions in a

Monte Carlo simulation (chapter 6).  It is therefore not surprising that the numerical analysis of

unsaturated flow in heterogeneous soils has been limited both in the number of studies published

and in the number of random realizations implemented for each study.

Recently, Harter and Yeh (1993) have developed an efficient combined analytical-

numerical method (called ASIGNing)  that reduces the cost  of computing the solution to

Richards equation (K, h) and Darcy's law (v) by two orders of magnitude, even for highly

heterogeneous input random fields Ks and " (chapter 7).  In this chapter, ASIGNing is applied

as the cornerstone to Monte Carlo simulations with a large number of realizations (N=1000).

The objective is to obtain highly accurate stochastic solutions of the dependent RFVs K, h, and

v in two-dimensional, vertical, steady-state unsaturated flow-fields of moderately to strongly

heterogeneous soils in  order to implement a stochastic analysis with respect to the statistical

input parameters describing the lognormally distributed RFVs Ks and ".  Accuracy here refers

not only to the numerical accuracy, but also to the statistical accuracy of the sample moments

obtained from the Monte Carlo simulation (compare to chapter 6).  The study is intended to

provide new insight to the problem of variably saturated flow in highly heterogeneous porous

media and to critically assess the assumptions and the range of validity of the analytical

stochastic steady-state flow model by Yeh (1985a,b), which has here been adopted for 2-D flow

and the particular case of " having a lognormal pdf (chapter 4).  All past studies of unsaturated

flow in heterogeneous porous media have been limited to soils with a variance of  y no larger

than one (Fy
2#1).  Field studies have shown that the variance of the logarithms of the saturated

and unsaturated hydraulic conductivity often exceed 1 and may be as large as 3, sometimes even

higher (Nielsen et al., 1973;  Vieira et al., 1981;  Anderson and Cassel, 1986;  Ciollaro and
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Comegna, 1988;  Lauren, 1988;  Wierenga et al., 1989).  In this study hypothetical isotropic and

anisotropic soils are investigated with Fy
2 ranging from 0.01 to 3.2.  The variability in y may be

due to the dryness of the soil (large mean soil water tension), or due to a high variability in Ks

and ", or due to a combination of these.

  It is expected that the results will be useful for the assessment of soil moisture

movement in variably saturated soils, and also for the assessment of unsaturated transport since

the second-order moments characterizing unsaturated flow are also used to estimate solute

transport in heterogeneous porous medium (Russo, 1993a,b;  Dagan, 1982, 1984;  Rubin, 1990,

1991a, 1992) (see chapter 9).  Among others, the proposed model allows accurate estimates of

the head covariance function and of the cross-covariance function between head, Ks, and " for

arbitrary boundary conditions.  These (cross-) covariances are necessary to implement

conditional simulations of unsaturated flow and transport (chapter 10).

Polmann et al. (1991) have pointed out the importance of model-generated data both to

validate analytical models and to improve our understanding of unsaturated flow processes:

Large amounts of data are difficult to obtain in the field and problems of sampling accuracy and

soil heterogeneity become intertwined. In contrast, "a simulation experiment based on model-

generated data enables us to focus on individual sources of heterogeneity while holding others

fixed.  If carried out systematically, this approach can identify the critical factors which control

moisture movement through heterogeneous soils" (ibid., p.1448).  The following analysis is

presented in this spirit.

First a rigorous definition is given for the term Monte Carlo and some simple measures

are introduced to determine the sample accuracy of numerical stochastic results as a function of

the number of realizations.   Then an outline is given of the  actual implementation of the Monte

Carlo simulations.  The results are presented separately for each of the dependent RFVs logK,

h, and v.  The general statistical properties of each of these RFVs are discussed,  the sample

error associated with the Monte Carlo simulation is determined, boundary effects are

investigated, the dependency of the RFVs on the independent parameters is analyzed and
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(8-1)

(8-2)

(8-3)

compared with the analytical stochastic model introduced in chapter 4.

8.2 Monte Carlo Simulation

8.2.1 Definition and Theoretical Sampling Accuracy 

The Monte Carlo method is defined as a random sampling procedure used to

numerically evaluate the integral:

where G is the expected value of the random variable g(X) defined in the sample space S.  g(X)

is an analytical function of a vector X of random variables or random field variables with a joint-

pdf p(X).  The numerical integration by Monte Carlo is performed as a game of chance (Kalos

and Whitlock, 1986), where N sets of random (field) variables X are sampled from the joint-pdf

f(X).  In Monte Carlo sampling is equivalent to generating a random number or random field

(chapter 3).  The integral above is approximated by the sum:

GN is the sample mean.  Through the fundamental theorem of large numbers it is guaranteed that

<GN> converges in the mean square to G (< > indicates expected value)

If Xi is independent of Xj, i�j, and if it is known a priori that g(X) has a Gaussian pdf

or if N is very large,  the sampling error (variance)  ,G
2 of the normally distributed sample mean

GN  is (Haan, 1977;  Kalos and Whitlock, 1986):

where Fg
2 is the variance of g(X).  Note that the sample moments are assumed to have a

Gaussian distribution rather than the commonly applied t-distribution, which is justified since

samples of at least 40 independent measurements are subsequently evaluated.  Since Fg
2 is not
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(8-4)

(8-5)

(8-6)

(8-7)

known, it must be estimated by:

The sample variance varg itself has an associated sampling error.  For the square-root sg of varg,

the sampling error (variance) ,s.g
2 of the sample standard deviation sg is approximately

(Yevjevich, 1972):

For the sample variance varg itself, simple heuristic considerations lead to the following

expression of the expected sampling error (standard deviation) ,v.g given ,s.g : 

which simplifies with the help of (8-5) to:

(8-3) and (8-7) can be used to estimate the sampling errors of past Monte Carlo studies of

unsaturated moisture movement.  Ünlü et al. (1990) implemented Monte Carlo simulations with

50 realizations of the moisture redistribution process in a one-dimensional soil column.  The

column consisted of  100 random  soil layers of varying soil properties.    The study addressed

the sensitivity of the head and vertical flux moments to the statistical input parameters and to

the boundary conditions.  Using (8-3) with N=50 and the sample head variances reported by the

authors, the 95% confidence interval (±2,G) for sample mean head ranges from ±0.2 cm to ±10

cm (±28% of the sample standard deviation).  This is a small range given that the mean suction

head varies over several hundred centimeters along the vertical column, but relative to the
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standard deviation it is rather significant.

The same accuracy of sample mean heads is found for Hopmans et al. (1988) who used

10 realizations of a two-dimensional, hypothetical soil cross-section consisting of 50 vertically

homogeneous columns i.e.,  with vertically constant Ks  and soil pore size distribution,  but

variable mean head.   The analysis was used to derive the nonstationary head and flux

distribution moments as a function of the distance above water-table by averaging over all 10

samples in all 50 columns in the same horizontal layer.  For a conservative estimate of the

associated sampling error it can be assumed that after a horizontal distance of roughly 10 soil

columns the local head and flux moments are completely independent of each other.  Then, N

= 10 * 50/10 = 50 (the number of  realizations times the number of independent soil columns per

realization), the same as in Ünlü et al. (1990).

The 95% confidence interval of the sample variance (±2,v.g) in these two studies ranges

from 60% to 140% of the ensemble standard deviation (as represented by the square-root of the

sample variance).  The same confidence interval applies to the sample covariance functions

computed in Hopmans et al. (1988).  While the results from both studies may be considered

accurate for practical purposes, the sampling error of the mean and variance in head and flux is

large enough to question the use of these results for comparison with analytical results.

From (8-7) it is straightforward to determine that the number of realizations necessary

to reduce the 95% confidence interval of the sample variance (or covariance) to within ±10%

and ±5% of the ensemble variance is N $ 800 and N $ 3200, respectively.  In other words,

roughly 1000 realizations are necessary to estimate the local sample variance (covariance) such

that in 19 of 20 Monte Carlo simulations the sample error is less than 10% of the ensemble

variance.  If the variance is obtained not only by averaging over the N samples at x, but also by

averaging spatially, less realizations are needed and the confidence interval will depend on the

spatial correlation of the RFVs.  Spatial averaging, however, assumes that the field is weakly

stationary i.e., that the ensemble mean G and ensemble variance Fg
2 are identical for all x in the

simulation domain.  In this study, the primary interest is to obtain the sample mean, variance,
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(8-8)

and covariance separately for each x so that stationarity of the dependent RFVs does not have

to be assumed a priori.

8.2.2 General Computational Procedures

Applied to the unsaturated flow problem, g(X) is any of the random field variables logK,

h, and v.  X is a vector of the two RFVs Ks and log".  Note that the mean and variance of the

RFV g(X) and the sampling errors ,G and ,s.g are functions of location x unless stationarity is

assumed.  To obtain the sums (8-2) and (8-4) individual realizations Xi of the Gaussian

distributed RFVs f=logKs and a=log" must be generated.  For each realization of f and a, the

corresponding random field solutions of y, h, vx (horizontal flux), and vz (vertical flux) are

computed by using the ASIGNing technique described in chapter 7.  The results are evaluated

not only to determine the first and second moment of the pdfs, (8-2) and (8-4), but also the

histograms of both the independent RFVs f and a (for control) and the dependent RFVs y, h, vx,

and vz.  The local sample covariance field of a RFV g centered around point x, covg(x,>), is

computed by:

And similarly the local cross-covariance field for two RFVs g and g' is defined as:
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(8-9)

Here, g and g' denote any of the RFVs f, a, y, h, vx, and vz. Note that unlike in any previous

numerical studies of unsaturated flow, the sample covariance and cross-covariance is evaluated

over the sample space N and does not involve any spatial averaging.  During the Monte Carlo

simulation, the sums in (8-2), (8-4), and (8-8), (8-9) are updated after each realization i.e., the

outcomes gi(x), gi
2(x), gi(x)gi(x+>), and gi(x)gi'(x+>) are added to the sum of their outcomes from

previous realizations j<i, respectively.  For efficient data management, the actual results of each

realization are discarded once all sums and histograms (see below) have been updated.  After

the Monte Carlo simulation is completed, the sample means, variances, and (cross-)covariances

(8-2), (8-4), (8-8), and (8-9) are obtained explicitly from the respective sums.

The sample mean GN and sample variance varg are themselves two-dimensional

realizations of RFVs and summary statistics can be obtained by spatially averaging over the

sample mean field and the sample variance field.  For N=1000, the spatial average of the local

moments (average sample mean and average sample variance) has a very narrow confidence

interval i.e., it is a very accurate estimate of the true mean and variance of the dependent RFV's

provided that the mean and variance fields are found to be weakly stationary.  Since the

statistical input  parameters F, A, H, Ff
2, and Fa

2  in this study are  all independent of location,

the statistical moments of y, h, and v must also be weakly stationary.  In the weakly stationary

Gaussian case, the spatial variance of the sample mean field, var(GN), and the standard deviation

of the sample variance field, std(varg), also provide an estimate of the sampling error and should

be similar to (8-3) and (8-7) if the sample moments indeed converge in the mean square sense

(see chapter 2).  For better comparison, the spatial variance of the local sample means is

normalized by  the expected sampling error ,G
2,  where the latter is obtained  by using the

average sample variance <varg> rather than the (unknown) ensemble variance Fg
2 in (8-3).  Then

the dimensionless actual sample error of the sample mean is defined as:
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(8-10)

(8-11)

(8-12)

where N is the number of realizations in the Monte Carlo simulation. Similarly, the

dimensionless actual sample error of the sample variance is defined by using (8-7):

As in (8-10) and (8-11) an apostrophe ' with a statistical moment subsequently indicates that the

moment has been normalized and that it is dimensionless.

The sample covariance and cross-covariance fields are computed in a window of half

the side-length of the simulation domain centered around each of nine sample locations x (Figure

8.1). In other words, (cross-)covariance values around x are computed only for separation

distances |>| not exceeding one-fourth of the domain-length in each principal direction.  The

choice of the locations xi and the size of the windows surrounding them is dictated by several

objectives:  to provide local sample (cross-)covariance fields that can be checked for spatial

trend; to spread the locations xi as far apart as possible to minimize correlation between the

sample (cross-)covariance fields; and finally to provide equally sized sample fields.  The latter

is necessary to obtain average (cross-)covariance fields Cgg'(>) for each lag distance >:

The window for the covariance and cross-covariance fields around the center point xcenter of the

simulation domain is chosen to be as large as the simulation domain itself to provide additional

information on covgg'(xcenter,>) at lag distances up to one-half of the domain size in each

dimension.

Finally, two classes of histograms are computed:  The local histogram of the RFVs at

xcenter and the total histogram of all outcomes of each RFV regardless of location.  The
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histograms are updated after each realization.  Figure 8.2 shows a simple flow-chart of the

Monte Carlo simulation procedure.

8.3 Simulation Parameters and Implementation

This study is geared towards the equivalent of a formal stochastic analysis and not

towards a particular field application.  Nevertheless, it is imperative to implement the numerical

analysis such that the demands of actual model applications are addressed.  An intensive study

of field heterogeneity in an arid soil was implemented by Wierenga et al. (1989, 1991) near Las

Cruces, New Mexico.  Measurements of the in situ and laboratory saturated hydraulic

conductivity, soil water content, and soil water retention function provide valuable information

about the magnitude of field soil variability.  The saturated hydraulic conductivity was found

to be on the order of 100 - 105 cm/d and to have a lognormal distribution.  Variances in logKs

(natural based logarithms) range from as small as 0.1 to as large as 3 depending on the

measurement method and the soil layer.  The overall variability of logKs at the Las Cruces site

is approximately 1.5.  A geostatistical analysis of these logKs data reveals that the correlation

structure can be modeled by an exponential covariance function with an integral scale of a few

meters in the horizontal direction and an integral scale of a few decimeters in the vertical

direction.   To describe the spatial variability of pore-size distribution related parameters,

Wierenga et al. (1989) fitted the VanGenuchten model (4-4) to the empirical retention curves

obtained from soil cores.  A statistical analysis of their data shows that the VanGenuchten " is

lognormally distributed with a geometric mean ' = 0.04 and variance Fa
2 = 0.3.  The

VanGenuchten  n is also best fitted by a lognormal distribution with a geometric mean n of 1.6

and a variance in log(n) of 0.02.  Covariance functions similar to that of logKs were found for

the parameters characterizing the pore-size distribution (unpublished study report, Harter, 1991).

This information of spatial variability of unsaturated hydraulic properties in the field provided

the basis for the design of the Monte Carlo simulations.
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The input parameters for all Monte Carlo simulations (MCSs) in this study are (Table

8.1):  the variances of f and a, Ff
2, Fa

2, the correlation between a and f, Daf, the geometric mean

' of the soil parameter " (eqn. 4-8), the horizontal and vertical grid discretization, )x, )z, and

the horizontal and vertical correlation scales of f (and a), 8fx, 8fz.  Only steady-state gravity flow

is considered.  Each Monte Carlo simulation is designed to simulate one particular, hypothetical

soil site.  The different sites (simulations) are arbitrarily labeled as #M, where M0{2,3,...,31}.

To keep matters simple and transparent, a base soil site is defined (#3).  From site to site, one

or a few of the input parameters are systematically varied.  Only the differences to the base site

are listed in Table 8.1.

Recall from chapter 7, that the ASIGNing technique allows the use of random Dirichlet

type boundaries by setting the head on the boundaries equal to the spectrally derived solution.

The solution for a particular sample of random fields f and a is obtained quasi-analytically in

the spectral domain (Harter and Yeh, 1993;  see also chapter 7)  The underlying assumption is

that the RFV h is weakly stationary, normally distributed, and that boundaries are at infinity.

The spectral solution for the head is defined through the spectral representations of f and a, and

through the ensemble means ' and H.  The mean vertical flux is controlled through ', H, and

the covariance function of f and a..  This type of boundary condition allows the simulation of

a finite portion of a quasi-infinite domain, which is consistent with many field applications.

Boundary conditions are rarely known with certainty.

Within the steady-state unsaturated flow profile the spatial variability of the soil water

content 2 is neglected.   For simplicity a  constant 2=1  is used in the  numerical simulations.

Then the pore velocity is  equal to the Darcian flux q  and is automatically normalized with

respect to the (constant) soil water content.  This greatly simplifies the flux analysis and - in

subsequent chapters - will prove advantageous in the analysis of solute transport through

unsaturated media, since the results are very general and independent of the relationship between

2 and h.  Note that this assumption does not neglect the change in water content from a very wet

to a very dry soil.  It only postulates that the water content spatial variability at a given H is
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negligible.  The velocity distribution can also be normalized with respect to the mean saturated

hydraulic conductivity, the only other RFV depending on units of time, since the choice of the

time-units is arbitrary.  Setting the mean saturated hydraulic conductivity to 1[cm/day], the

actual steady-state results for the velocity distribution given a mean saturated hydraulic

conductivity of x [cm/day] are obtained by multiplying the velocity with x.

         The mean pressure head in the base soil is  -150 cm and varies in other simulations from

-100 cm to -3000 cm.   The mean pressure head is chosen to avoid partial saturation of

significant parts  of the soil  domain if the soil is very heterogeneous.   Partial saturation poses

no problem to the Monte Carlo simulation, but cannot be taken into account by the first order

stochastic analysis to which the numerical results are compared.  The base site has a unit

variance of f, Ff
2=1.   In other soils, Ff

2 is as small as 0.01 and as large as 4.   The geometric

mean ' of " is 0.01  cm-1 with a variance Fa
2 = 0.01 such that . = Fa/Ff = 0.1.   All simulations

are implemented using the exponential covariance function (7-5) for f and a.  The RFV a is

either perfectly correlated with f (Daf=1) or  - as in the base soil site - independent of f (Daf=0).

It has a correlation scale that is always identical to that of f.  In the sensitivity analysis the

geometric mean of " is increased to values as large as 0.1 cm-1 and the variance of a varies

between 10-4 and 0.6.   The correlation scale is systematically varied from as little as 12.5 cm

in both the horizontal  and vertical direction  to as much as 300 cm in the horizontal and 50 cm

in the vertical.  The base soil is isotropic with a correlation scale 8f = 50 cm.  The discretization

of the base soil site yields squared finite elements of (10)2 cm2  or 1/5th of the correlation scale

in each dimension.   The vertical discretization ()z=10 cm)  is chosen according to the results

of the grid design analysis in chapter 6.  Different finite element discretizations are also selected

to test the grid-design with the Monte Carlo approach (as opposed to the single simulation

technique used in chapter 6).  An isotropic case is simulated with )x =)z=2.5 cm and a

correlation scale |8f| = 12.5 cm in each direction (#19).  The effect of horizontal discretization

on the stochastic results is tested by comparing an anisotropic case (8f_x=300 cm, 8f_z = 50 cm)

with )x =30 cm and )z=10 cm (#12) with the same case, but different horizontal discretization
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)x =10 cm (#11).

8.4 Random Field Generator:  Evaluation

The performance of the random field generator used to generate the two-dimensional

input random fields of Ks and " has been discussed in chapters 3 and 6.  The spectral generator

produces numerically undistorted random fields with sample moments that are in excellent

agreement with the specified ensemble moments.  The only significant weakness of the

technique described in chapter 3 is a small reduction in the variance of the random fields:  The

sample variance is generally 5% lower than specified, while the sample covariance reproduces

the desired covariance structure at non-zero lags with very good accuracy.  No consistent error

is observed for the sample mean.  These results from chapter 3 are confirmed by the sample

moments obtained for f and a in the unsaturated flow simulations.  The histograms of f and a

show a smooth Gaussian-like distribution, and no consistent artificial spatial pattern is observed

in the two-dimensional map of the input sample moments (Figure 8.3d,h).   In the base soil #3,

the local sample mean F1000(x) of f varies  from -0.1 to 0.1 with a  (spatial) standard deviation

of the sample mean of 0.033.  The expected standard deviation (8-3) of the sample mean is ,F

= 0.032 (N=1000) (Figure 8.3a).   The local sample variance  of f  varies from 0.8 to 1.1 with

a spatial average of 0.94,  which is 6% below the specified ensemble variance (Figure 8.3b).

The spatial standard deviation of the local sample variance is 0.043 which is very close to the

expected ,v.f  = 0.042 (8-7).   Similar results are found for the sample moments of a.  The

average sample covariance function (8-8) for f and a are isotropic (Figure 8.3c,g) and a cross-

section shows that they are in excellent agreement with the specified exponential covariance

function (Figure 8.6).

8.5 Stochastic Analysis of the Unsaturated Hydraulic Conductivity
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The stochastic analysis of the dependent variables y, h, vx, and vz is organized in the

following manner:  Using primarily the results from the base soil site #3, general observations

are summarized regarding the structure of the random fields, the structure, stationarity, and

sampling error of the sample mean and sample variance fields, and the structure of the

covariance fields.  The covariance fields are qualitatively compared with analytically obtained

covariance functions (chapter 4).  The histograms are described to draw conclusions about the

empirical pdf of the dependent parameters.  Then a quantitative analysis is implemented

regarding the stochastic dependence of the mean, the variance, and the covariance of the

dependent RFVs on the variances Ff
2, Fa

2, the correlation Daf between a and f, the mean head H,

the geometric mean ' of ", the horizontal and vertical correlation scales 8fx and 8fz of f, the

anisotropy aspect ratio < = 8fx/8fz, and the grid discretization )x and )z.  The numerical results

are directly compared with the first order analytical solutions.

8.5.1 General Observations

Sample mean and sample variance field.  At site #3, the sample mean and variance fields

of y have the random character of individual realizations (Figure 8.3i,k).   The dimensionless

errors (8-10) and (8-11) of the sample mean and sample variance are 1.21 and 0.99, respectively.

Almost identical sampling errors are observed for other soils with the same or less variability

in y.  At the anisotropic soil sites, the dimensionless error of the sample mean reduces to 0.82

due to the smaller size of the simulation domain relative to the correlation scale of f (see Table

8.1).  No significant trend or other artificial spatial features indicates a deviation from second

order stationarity.  Second order stationarity for y and other dependent RFVs is expected since

the random head boundary conditions are weakly stationary and the mean vertical flow therefore

uniform.   Notice that the sample  mean and variance of y on the boundary are not notably

different from the interior of the simulation domain.   However, for soils with larger aspect ratio

< than the base soil site #3 or larger variability Fy
2 or both, the variance within 0.58fz  from the
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bottom boundary  and within 28fz from the  top boundary tends to be lower than in the rest of

the domain by up to approximately 30%.  A similar variance reduction is observed within 0.28fx

of the horizontal boundaries. These boundary effects on the sample variance of y increase ,'v.g

to 1.26 in the highest variance soil (#21) while reducing ,'G
2 to 0.67.  No significant boundary

effects are observed for the sample mean Y of y at any soil site.

The average reduction of Fy
2 at and near the boundary is due to setting the head values

on the boundary equal to the first order approximation of the head, given the random fields of

f and a.  The statistical moments of the head on the boundary are therefore not entirely

consistent with those in the interior of the domain.  As will be discussed below, the head and

velocity variances near the boundary increase significantly for soils with high variability in

moisture flux due to the approximate nature of the first order quasi-analytical head boundary

conditions.  It is not clear, however, why there is a reduction and not an increase in Fy
2 near the

boundary (relative to the interior).

Sample covariance.  For all soils the sample covariance field Cyy of y is very similar to

the input covariance  field Cff reflecting the  physical observation that the  random fields  of y

have a  very similar  random structure as the random fields of f and a (compare e.g., Figure

8.3i,k vs. Figure 8.3a,b).  At the isotropic soil sites (isotropic with respect to f), Cyy has a very

small, but notable anisotropy with larger vertical than horizontal correlation scale (Figure 8.6).

The correlation  lengths in both  directions are  approximately 10% smaller than 8f.  The

horizontal covariance is of the "hole-covariance" type i.e., it becomes negative at some lag

distance and then tends asymptotically to zero.   The vertical covariance of y remains positive

for all lag-distances.  In the anisotropic soils with < > 1, the situation reverses to a hole-type

covariance function in the vertical direction and an exponential type covariance function in the

horizontal direction.   Again, the correlation lengths are approximately 10% smaller than those

for f (Figure 8.7).  These findings are in excellent agreement with the theoretical covariance

function derived in chapter 4.  In Figure 8.5d a single sample covariance Cyy is plotted for an

anisotropic wet soil with <=3 and Ff
2=0.95 (#31) to illustrate the qualitative agreement between
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(8-13)

(8-14)

the analytical solution  and the numerical results.   Similar qualitative agreement of the sample

Cyy with the analytical Cyy is found at all sites.  The correlation function Dyy is also in good

quantitative agreement for all soil sites, even those with strong variability (compare Figure 8.6,

a mildly heterogeneous,  isotropic soil, with Figure 8.7,  a strongly heterogeneous, anisotropic

soil).

Histogram.  The histograms of y at all soil sites indicate that y is Gaussian-like

distributed i.e., the unsaturated hydraulic conductivity seems lognormally distributed (Figure

8.3m).  Only at the driest soil site (#21), which is also the soil with the highest variability in y,

the histogram has a slight tail towards lower y.  No distribution tests were implemented.

8.5.2  Moment Analysis of the Unsaturated Hydraulic Conductivity

For the stochastic analysis, only the spatially averaged sample moments are considered.

To eliminate the non-stationary effects near the boundary, the average sample mean and variance

of  each dependent RFV are obtained by averaging over the center 33 by 33 nodes (h,vx, vz) or

the center 32 by 32 elements (y). y is computed for each element from Gardner's equation (4-8)

by arithmetically averaging the head values on the four nodes surrounding the element.

Since the correlation functions of f and a are identical within each soil site, inspection

of 4-31, 4-39, and 4-47 in chapter 4 suggests that the variances of all dependent parameters of

interest - h, y, vx, and vz - can be normalized by the variance factor F2:

Note that F2 is not identical with either the saturated conductivity variance Ff
2 nor with the

unsaturated conductivity variance Fy
2.  The dimensionless unsaturated hydraulic conductivity

variance F'y
 2:
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as well as the dimensionless variances of the other dependent RFVs are in first order

independent of the mean soil water tension H, the correlation Daf, and the variances of f and a.

The analytical, dimensionless variances and covariance functions of all RFVs including y are

therefore only functions of the correlation scales of f and the geometric mean ' of ".  The

numerical analysis shows, however, that the actual stochastic relationship between the dependent

RFV second moments and the independent RFV pdfs is more complex than suggested by the

analysis in chapter 4.  The following results will illustrate this for the unsaturated hydraulic

conductivity variance.  The stochastic analysis of other RFVs is given in subsequent sections.

Dependence on input variance.  The average sample mean Y of the log unsaturated

hydraulic conductivity changes proportional to H such that for all sites the first order

approximation of Y (4-35), Y=F+H', holds very accurately (deviations of less than 1%).  Figure

8.8b shows the normalized soil variances Fy
2 as a function of the input variance Ff

2, aspect ratio

<, and vertical correlation scale 8fz.  All soils have the same mean tension head H = -150 cm.

The random fields of f and a are independent.  The variance ratio .=Fa/Ff is 0.1.  It is obvious

from Figure 8.8b that the results are not quite independent of the actual magnitude of the

variances in f and a.  For the three least variable soil sites (Ff
2=0.01, 0.11, 0.95), the actual Fy

2

is approximately 4% smaller than the first order results indicating (as expected) a very good

agreement between the numerical and the analytical results (Table 8.2) considering that the

variance of the input random fields is also approximately 4%-5% smaller than specified.

With increasing Ff
2, the dimensionless F'y

2 increases more or less linearly.  In the

anisotropic soils the increase relative to the analytical solution is larger.  At Ff
2=3.6, the

numerical F'y
2 is 4% larger than the analytical F'y

2 in the isotropic soil and 10% and 16% larger

in the anisotropic soils with 8fz=50 cm and 30 cm, respectively.  A careful analysis of these

results reveals that the differences partly stem from an increasing difference in the sample mean

head (used for the normalization (8-14)) at higher variances.  The difference between the actual

(dimensional) and analytical Fy
2 does not exceed 11%, even for the most variable soils (Fy

2=3.2)

including the dry sites that are not shown here.
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The dependence on Fa
2  alone is demonstrated by comparing the isotropic base site

(Fa
2=0.01, #3) with a soil having Fa

2=0.64 (#26).  In the latter soil the difference between the

actual and analytical Fy
2 (dimensional) is 16%.

Overall, the MCSs indicate that the first order analytical estimate of the mean Y of the

unsaturated hydraulic conductivity is very accurate even for strongly heterogeneous soils.  The

analytical solutions underestimate Fy
2 at large variances of f and a.  For practical purposes, the

10%-16% error of the analytical solution in very heterogeneous flow fields (large Fy
2) is

negligible.

Dependence on soil water tension and the correlation between f and a.  Again, the first

order approximation of Y gives very accurate predictions (to within 1%) of the observed Y.

Apart from the differences between analytical and numerical solutions for Fy
2 discussed in the

previous paragraph, neither the mean head, nor the correlation coefficient Daf have a remarkable

effect on F'y
2.  Due to the particular form of the variance factor F2, the variance of all RFVs goes

to 0 for Daf=1 as H6-1/.'.   At soil water tensions  that are more negative  than this limit, the

variances of all RFVs increase again (see also chapter 9).  It is found that these results indeed

hold for the numerical simulation.  In correlated soils, the first order solution for the moments

of y is accurate over a larger range of soil tensions than in uncorrelated soils.  Only at a very dry

head (H=-3000) with a large Fy
2, the dimensionless F'y

2 increases relative to the analytical

solution (Figure 8.9b).

Dependence on ' and the correlation scale of the soil.  The second moments of the

dependent RFVs depend nonlinearly on ' and 8 as shown in Figure 8.10b and are also found

to be in good agreement with the first order analytical solution, even for large ' = 0.1 cm-1.

Dependence on aspect ratio and grid discretization.  The difference between the

numerical and analytical Fy
2 increases for larger aspect ratio < and longer vertical correlation

scale 8fz.  Figure 8.11b and shows that overall the variance of y decreases as the aspect ratio

increases, as expected from the first order analysis.  Different horizontal element discretization

(#11 vs. #12) does not influence the results for y.
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8.6 Stochastic Analysis of the Soil Water Tension

8.6.1 General Observations

Sample mean and sample variance field.  The sample mean and variance fields of the

soil water tension have a very different random character compared to y, f, or a (compare Figure

8.3i,k with Figure 8.4a,b): The visual patterns are much less erratic and significantly broader

with only a few relatively large areas of randomly high and low sample values.  This pattern is

a reflection of the much less erratic nature of the underlying realizations of h, which exhibit a

similarly smooth pattern (see Figures 7-2 through 7-4 in chapter 7).

The dimensionless  error of sample mean and sample variance, ,'G
2 and ,'v.g, are 0.66 and

1.09, respectively at the isotropic base soil site (#3).  Recall that the dimensionless error reflects

the spatial variability of the sample mean and sample variance within the simulation domain

relative to the expected variability in an infinite domain.  The low error of the sample mean is

caused by the strong correlation of the head sample mean values within the simulated domain;

the sample domain is small relative to 8h (approximately 3 8hx and 5 8hz).  In the anisotropic soils

(anisotropy in f), ,'G
2 becomes even smaller ranging from 0.22 in the less variable soils (e.g. #12)

to 0.46 in the most variable soils (e.g. #22).  This significant reduction in the sample error comes

despite the fact that e.g., for the anisotropic soils with <=6, the correlation scales are 8'hx.2 and

8'hz.3, which means that the relative domain size (measured in 8h) remains approximately the

same as in the isotropic soils.  The low ,'G
2 indicates that the sample error associated with the

average sample mean approaches that of the local sample mean.  The variance sample error ,'v.g

is approximately 1.  In the anisotropic soils of moderate variability it generally is within 5% of

1, and increases to 1.1 in the isotropic soils.  In the strongly variable soils ,'v.g increases up to

1.4.

Boundary effects are insignificant at the base soil site (Figure 8.4a,b).  But in more

heterogeneous soils and particularly in soils of stronger horizontal anisotropy, the variance

increases by up to 30% in a boundary region that is 8fz=2 thick near the horizontal boundaries,
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but only 8fx=0.2 wide near the vertical boundaries.  In other words, the boundary effect is

particularly dominant into the direction of mean flow.  The variance increase is due to the larger

variance in the first order head perturbation solution on the boundary (see discussion below).

The artificial impact of the first order random head boundary in the anisotropic and strongly

heterogeneous soils is - spatially - much less dominant than constant head or flux boundary

conditions, which have traditionally been used in Monte Carlo simulations.  For the saturated

case, Rubin and Dagan (1988, 1989) estimate that the boundary effects of such non-random

boundaries vanishes only at a distance of at least 18f to 28f from the boundary.

Covariance sample field.  The "smoothness" of the realizations of h and of  the pattern

in the sample mean and variance fields is quantitatively captured by the covariance function,

which has a much larger correlation scale than f in both the horizontal and vertical direction

(Figure 8.4c).   Even for the isotropic base soil #3, the head covariance Chh is anisotropic with

8'hx = 8hx/8fx. 4.5  and  8'hz = 8hz/8fz.2.5.   The anisotropy is reflected  in the horizontally

elongated pattern structure of the sample mean and variance fields in Figure 8.4a,b.  The

numerically obtained covariance function is well predicted by the analytical covariance function

for the head Chh  (Figure 8.5a,b).  The covariance function is similar to an anisotropic Gaussian

function, particularly near the origin, which explains the smoothness of the random head fields

(Figure 8.6).   For larger lag  distances both the analytical and numerical covariance fields

deviate from the oval shape of the Gaussian covariance.  In the vertical direction, the head

covariance is a "hole"-type function (see discussion of Cyy) regardless of the type of soil

investigated here.   The limitation of the domain size does not allow an assessment of the type

of covariance function in the horizontal direction.  The differences between numerical and

analytical covariance functions are primarily due to sampling variability and due to the different

variances.  The normalized head correlation functions Dhh from the first order analysis and the

Monte Carlo  analysis are in good agreement not only for mildly heterogeneous soils (Fy
2=0.1,

#8, see Figure 8.6), but also for highly heterogeneous soils (Fy
2=3.2, #22, Figure 8.7).  For

strongly heterogeneous  soils of any anisotropy ratio,  the analytical correlation  function tends
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to underestimate the vertical correlation of the Monte Carlo results.  In anisotropic soils this is

also true for the head horizontal correlation.

Histograms.  The histogram for the total of sample head values is not significantly

different from the histogram for the head values sampled at the center of the simulation domain.

Figure 8.4d shows the total sample histogram for the base soil site.  At this and most other soil

sites, the histogram follows the symmetric Gaussian pdf, which confirms a basic assumption of

previous analytical studies of flow in heterogeneous soils (Yeh et al., 1985a,b,c;  Mantoglou et

al., 1987a,b,c).  Only in the most heterogeneous soils (those with the highest Fh
2) and in soils

with a large ' (=0.1 in #30) an almost negligible but consistently notable tail towards more

negative head values develops.

8.6.2 Moment Analysis of the Soil Water Tension

Dependence on input variance of f and a.  In the least variable soil (isotropic soil site

#2 with Ff
2=0.01)  the average mean head deviates less than 0.1% from the mean head (-150 cm)

prescribed for the first order perturbation solution on the boundary.   As the variance of f and

a increase,  the mean head drops slightly to -150.9 cm  in the isotropic base soil site with Ff
2=1

(#3) and to -156.3 cm in one of the most variable, wet anisotropic soil sites with Ff
2=4 (#22).

In drier soils the difference between prescribed and average measured mean head does not

exceed 1%, even if the head variance is very large (e.g. #21).  The actual sample mean head is

not sensitive to any of the other input parameters.  The rest of this section will therefore only

discuss the dependence of the sample head variance on the various input statistics.

For the least variable three isotropic soil sites, the results of the head variance are shown

in Table 8.2 together with the analytical head variance solution.  For those three soils the largest

difference between numerical and analytical head variance is observed for the least variable soil.

There, the variance in the Monte Carlo is 4% higher than the analytical variance Fh
2.  At Ff

2=1

(#3) the difference is reduced to 2%.  For practical purposes, the first order analytical solution
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(8-15)

is considered accurate for isotropic soils of Ff
2#1.

The normalized head variance F'h
2 is:

where the variance factor F 
2 is defined in (8-13).  Figure 8.8a shows that the numerical head

variance in the isotropic soils is well modeled by the analytical head variance even at Ff
2=3.6.

In the anisotropic soils,  the head variance is  also very accurately predicted from theory for

Ff
2=1, but decreases linearly (relative to the first order solution) at higher variances.  The

decrease is the strongest for those soils with the highest aspect ratio,  such that for a wet soil

with <=6 and 6.7, and with Ff
2=3.6 the head variance in the Monte Carlo simulation is only 75%

of the analytically obtained variance.  This is consistent with the boundary effects observed

particularly in the anisotropic soils.

The robustness of the first order head perturbation solution at variances up to Ff
2=1 has

previously been discussed in the literature, but with respect to saturated groundwater flow.

Dagan (1985) computed second order corrections for the head moments in an infinite aquifer and

found that for Ff
2=1 first order head moments are within 10% of the second order head moments.

Gutjahr and Gelhar (1981) concluded from their analysis that the spectral first order

approximation of the head moments in saturated porous media is valid even for variances Ff
2

much larger than unity.  As Gelhar (1986) noticed, no such evaluation has been made for the

spectral analysis of unsaturated flow.  While this study does not address the issue analytically,

the simulations clearly indicate the general trend:  First order analysis will significantly

overestimate Fh
2 at large Ff

2 and Fa
2.  It may be argued that the difference is due to the small

simulation domain.  However, the average sample variance as well as the sample variance in the

center of the simulation domain change insignificantly, when the vertical and horizontal domain

size is increased to 150 nodes and 100 nodes, respectively.

Dependency on mean soil water tension.  In anisotropic soils the numerically obtained
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F'h
2 decreases as the soil becomes drier and as Fy

2 increases (Figure 8.9a).  For the driest soil

(#21:  H=-3000 cm, <=6, Fy
2=3.2) the decrease is approximately 25% i.e., almost the same as

for the highly heterogeneous wet soils (#22:  H=-250 cm, <=6, Fy
2=3.2).  The overall effect of

mean soil water tension on the actual variance of the head depends on Daf as discussed in the

analysis of y.  For mean head much more negative than the critical head H=-1/.', the head

variance will increase in any soil but not as strong as suggested by the form of the variance

factor F2 (8-13).

Dependency on ' and vertical correlation scale.  A similar deviation from the first order

results is not observed for varying vertical correlation scale or increased coarseness of the soil

texture (larger average pore size distribution parameter '), if Ff
2 does not significantly exceed

unity.  As Figure 8.10a shows, there is excellent agreement between first order analysis and

Monte Carlo analysis.

Dependency on aspect ratio and grid discretization.  The effects of aspect ratio are also

well modelled by the first order approximation (Figure 8.11a) if Ff
2=1.  As the aspect ratio <

increases, Fh
2' decreases slightly relative to the analytical solution.  A threefold increase in the

horizontal element size (#12 vs. #11) increases the head variance slightly (about 2%).

8.7 Stochastic Analysis of the Velocity

8.7.1 General Observations

Sample mean and variance fields.  The random structure of the horizontal and vertical

velocity fields are very peculiar and distinctly different from those of other RFVs.   In Figure

8.12, a single realization of corresponding vx and vz fields in the base soil site (#3) are shown.

The horizontal velocity map has a distinctly symmetric pattern of diagonally trending narrow

stripes with strong negative velocities (dark NE-SW trending "canyons") and counter-diagonally

trending narrow  stripes with strong positive velocities  (white NW-SE trending "cloud

streamers") in an otherwise relatively homogeneous velocity field with very small horizontal
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velocities.   The vertical velocity map,  in contrast, is not quite unlike the map of a braided

channel network in a river valley or of the preferential flow paths that have been reported to

occur in soils:  While most portions of the soil domain have relatively small vertical velocities

(lightly colored areas), high velocities (dark areas) form a braided network of narrow channels

with a predominantly vertical direction.  The diagonal streaks of vx and the vertical braided

channels of vz reappear  in the sample mean and sample variance maps (Figure 8.4e,f,i,k), but

in a much more vivid, livelier,  more interwoven,  and more erratic manner.   Graphically

speaking,  the laziness of  the landscape in  the individual realizations is replaced by a vivid

pattern in the sample mean and variance fields.  This is in contrast to the observations for the

sample mean and variance fields of f, a, y, and h, which are all very similar in character to

individual realizations.

Individual realizations are relatively homogeneous over large areas (the laziness) with

extreme values  (the canyons and clouds and river channels) interrupting them at a spatial

interval that is on average significantly  longer than the transverse size of the channels and

streaks.  In the sample mean and variance fields the diagonal and cross-diagonal  streakline

pattern and the vertical braided channel pattern are preserved, but the transverse extent of the

channels and streaks is narrower, the frequency of streaks and channels has increased, and they

are much less continuous.

What is the explanation for the particular pattern of the individual realizations and the

character of the sample mean and variance fields?  And what is its significance?  Before

analyzing the statistical  description of the velocity RFV,  it is important to  pursue these

questions to better understand the physical nature of moisture movement in heterogeneous soils.

The horizontal and vertical  velocity realizations depicted in  Figure 8.12 must be seen

as a unity since they are two components of a single vector v.  The areas of very large positive

and negative horizontal velocity occur in those parts where the vertical velocity is also large

(indicated by the channels) but where the channels are inclined relative to the vertical axis.  In

the isotropic soil of Figure 8.12, the horizontal component of the velocity is rarely much larger
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than the vertical component, therefore the diagonal orientation of the streaks (instead of a

horizontal or near  horizontal orientation).   Since most  of the flow is vertical,  the vertical

velocity map can be seen as almost representative of v.  The velocity map in Figure 8.12b

indicates that soil  moisture movement in  spatially variable but  statistically homogeneous

(chapter 2) soils tends to be  along preferential flow paths i.e.,  the majority of soil moisture

moves through  only a small  portion of the entire  soil domain.   In a large part of  the soil

domain, moisture flux is relatively small.   The simulations show that the concentration of

moisture flux into small channels increases as the heterogeneity of the soil increases or as the

soil becomes drier.  Similar patterns of flow channeling are shown by Moreno et al. (1989) who

modeled Darcian flow in a two-dimensional, single fracture with varying aperture and high

variability of  fracture resistance  (which is inversely related to the conductivity).   Channeling

has also been observed in field soils, where channeling due to soil heterogeneity and channeling

due to wetting front instability  (fingering)  together may greatly enhance the variability of the

flux field (Glass et al., 1988).

From these physical observations it is expected that both the vertical and horizontal

velocity distribution have a non-Gaussian, highly skewed distribution.  As discussed in more

detail below, the velocity components are indeed non-Gaussian, lognormal-like distributed

(Figure 8.13).  Hence the usefulness of the first and second moments as measures of the pdf of

v is limited.  Since the sample mean and variance are obtained through arithmetic averaging, the

large velocity areas of individual realizations carry much weight in the sample mean and

variance.  The maps of the two sample moments become like a collection of the many streaks

and channels of the individual realizations.

Boundary effects.  The sample mean and sample variance fields of the velocity have

boundary effects that quantitatively are very strong, even at the base soil site, where no

significant boundary effects are observed for other RFVs (Figure 8.4e,f,i,k).  Directly on the

boundary,  extremely low and high values occur in the  sample mean of both velocity

components.  The sample variance of the velocity is much higher at the boundary than in the
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interior of the domain: at the base site (#3) by up to an order of magnitude for Fvx
2 and a factor

5 for Fvz
2.   The spatial extension of the  boundary effects are particularly strong for Fvx

2  into the

mean  flow direction:   along the horizontal  boundaries they  are significant within  18fz (Figure

8.14a,b).  Along the vertical boundaries and for all boundaries around the Fvz
2 map the effect is

limited to 0.58fz and less.  The boundary effect has a spatially larger extent in the anisotropic

soils of  equivalent heterogeneity,  which increases with  the variability of y.  If Fy
2 . 3, the

boundary effect significantly increases Fvx
2 and Fvz

2 within almost 38fz from the bottom boundary

and within almost 28fz from the top boundary (Figure 8.14e,f).  For this soil the velocity variance

on the boundaries is three orders of magnitude larger than in the interior of the domain.  The

spatial extent of the boundary effect on the velocity moments is slightly smaller than the spatial

extent of constant flux boundary conditions in saturated flow (compare Figure 8.14 to Bellin et

al., 1992, Figure 3).

The very strong though spatially limited boundary effects on Fv
2 are again caused by the

approximate nature of the first order head perturbation solution used as Dirichlet boundary

conditions in the numerical model.  But while the statistical moments of the first order head

approximation are in excellent agreement with those of the Monte Carlo simulation for Ff
2 =1,

the velocities derived from the first order perturbation head distribution along the boundary are

extremely erratic.  A simple method to circumvent the erroneous boundary effects in transport

simulations is described in chapter 9.

Covariance fields.  The covariance fields for vx and vz are a reflection of the diagonal

and counter-diagonal patterns, and of the braided vertical patterns, respectively, of the high

velocity areas (Figure 8.4g,l).  For increasing aspect ratios, the two diagonal main axes of the

horizontal covariance function become flatter (Figure 8.5e,f) indicating that the diagonal flow

patterns observed in the isotropic soil (Figure 8.4g) tend to become more horizontal as the aspect

ratio increases.  For mildly to moderately heterogeneous soils such as the base soil (#3), the

analytical covariance functions obtained from the first order spectral density functions for the

two velocity components are in very good qualitative, if not quantitative agreement with the
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numerically derived velocity covariance functions (Figures 8.5 and 8.6).

In soils (wet or dry) with Fy
2 > 1, the vertical and horizontal cross-sections of the

analytical velocity correlation functions deviate significantly from the numerically determined

solutions.  The numerically obtained horizontal velocity correlation function is almost identical

in the transverse (horizontal) and the longitudinal (vertical) direction, while first order analysis

predicts a much shorter transverse correlation scale and a much larger longitudinal correlation

scale.  The numerical vertical velocity correlation function has also a much shorter longitudinal

correlation scale than the analytical correlation function.  Only the transverse hole-type

correlation of vz is very accurately predicted for all soils (compare Figures 8.6 and 8.7).

Histograms.  The histogram for vz is - as expected - skewed (see, for example, Figure

8.4m).  The velocity statistics are obtained on the untransformed RFVs.  Logarithms were not

taken during the simulation due to the fact that neither the vertical nor the horizontal velocity

component is restricted to either positive or negative values only.  A graphical method to

investigate whether the vertical velocity is indeed lognormal-like distributed consists of a plot

of the histogram on a lognormal axis (Figure 8.13).  For very small input variances of f (Ff
2

=0.01) the histogram of vz can either be interpreted as normal or as lognormal (Figure 8.15), but

at higher variances, the histogram is always skewed on the arithmetic scale, even for mildly

heterogeneous soils (e.g. Ff
2 = 0.11, #8, see Figure 8.15).  This result is in accordance with the

histograms obtained from Monte Carlo simulations of saturated flow in two- and three-

dimensional heterogeneous media by Bellin et al. (1992) and Levin (1994).  Figure 8.16 shows

the total histogram as well as the histogram of the center point of the simulation domain for vx

and vz.  The two types of histograms are generally identical.  The histogram for the center point

is of course based on only N=1000 values, while the total histogram is based on 4 million data

(642 N).  Even the histogram plotted on the logarithmic axis has a significant skewness if the

soils are dry or very heterogeneous (Figure 8.16h,i).  In the soils with very high variability, a

significant amount of vertical velocities is positive (upward) (Figure 8.16h,i,k).

The horizontal velocity  histogram plotted on an  arithmetic scale  (Figure 8.4h) seems
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(8-16)

to be Laplacian (symmetric exponential decay, chapter 2), but plotting the histograms of |vx| on

the  logarithmic  scale  reveals  that the pdf for vx must be differentiable for |vx|60 (Figure

8.16a-e).  The histogram of vx resembles a Gaussian function only if the unsaturated hydraulic

conductivity  variance is  very small  (Fy
2<0.2).   This is  in contrast to the findings of Bellin et

al. (1992) and Levin (1994) who argue that the horizontal velocity component in their

simulations has a normal pdf even in very heterogeneous saturated porous media.  However,

visual inspection of the numerical velocity cdf and the Gaussian cdf in Figure 7d of Bellin et al.

(1992) indicates that their transverse velocity pdf qualitatively tends away from the Gaussian

pdf towards a similar shape shown for the unsaturated velocity pdf e.g. in Figure 8.4h!

8.7.2 Moment Analysis of the Velocity

Dependence on input variance of f and a.  Due to the mean vertical, uniform flux, the

mean horizontal velocity must be 0.  In all simulated soils, the average sample mean horizontal

velocity Vx is at least three orders of magnitude smaller than the mean vertical Vz and can

therefore indeed be considered as being negligible.  The first order analytical mean Vz is equal

to:

where Km =exp(Y) is the geometric mean of the unsaturated hydraulic conductivity.  The first

order analysis, of course, assumes that both the vertical and horizontal velocities have a normal

distribution.  Nevertheless, the difference between analytical and average sample Vz in the

isotropic soils with Ff
2 # 1 is 2% at the most (Table 8.2).  For the most heterogeneous soils (#9)

the Monte Carlo Vz is 10% larger than (8-16).  In contrast, the average sample Vz in the

anisotropic, wet soils with <=6.0 and <=6.7, Ff
2=1, is more than 20% smaller than the analytical

Vz and decreases to less than 50% of (8-16).  The decrease in the average arithmetic sample

mean velocity relative to the analytical mean velocity must be explained with the neglect of
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(8-17)

higher order moments in (8-16) and with the lognormal distribution of vz, which yields a

preferential flow pattern as the variance increases, particularly in anisotropic soils.  The

numerical results show that the average steady state flux in highly heterogeneous soils depends

strongly on the aspect ratio.

For a better physical explanation, vz must be analytically evaluated to higher order than

in chapter 4.  Yeh et al. (1985b) used a mixed first and second order approach to determine the

effective hydraulic conductivity Ke in a vertically uniform flow field.  The effective conductivity

is defined as Ke=<qz>/Jz, where <qz> is the mean vertical flux and Jz is the mean vertical total

potential gradient.  All of the simulations here preserve the mean unit gradient condition.  Since

the soil water content in all simulations is constant and identical to 1, the average sample mean

Vz from the MCS becomes the effective hydraulic conductivity.  As Figure 2 in Yeh et al. (1985)

indicates, Ke/Km is expected to be slightly larger than 1 in isotropic soils, but only about 0.5 for

<=10 ('8fz = 0.5).  Qualitatively and quantitatively, their findings are therefore confirmed by

the numerical simulations.

The average sample velocity variances  Fvx
2 and  Fvz

2  differ by 0% and -3% from the

analytical solutions for the least variable soil (#2, Ff
2=0.01).  In isotropic, wet soils with  Ff

2=0.1

and 1 (#8, #3), the differences of the numerical to the analytical solutions are of similar

magnitude (Table 8.2).  Again a more rigorous analysis can be performed by using the

dimensionless variances of vx and vz, which are defined by:

where the variance factor is defined in (8-13).   The numerical F'vz
2 and  F'vx

2 are plotted in

Figure 8.8c,d for wet soils with three different anisotropy ratios.   The Monte Carlo F'vx
2

increases significantly in all soils as  Ff
2  increases.   In the most heterogeneous soils,  the

average sample  F'vx
2 exceeds the analytically predicted by a factor of 5 in the two anisotropic
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soils and by a factor of 2.5 in the isotropic soil.  The Monte Carlo F'vz
2 in the isotropic strongly

variable soil is also  larger than predicted (factor of 1.5),  while it decreases with the variance

of f in the anisotropic soil.   The results are difficult  to interpret,  since the RFVs are not

normally distributed.  But they clearly show the limitations of the perturbation approach with

respect to the velocities.

Dependence on mean soil water tension.  The stochastic dependence on the mean head

found in the MCS deviates from the analytical results in a similar way, if both the previous and

these results are stated not in terms of  Ff
2 and H, but in terms of  Fy

2:  The deviations become

stronger as  Fy
2 increases, which may be due to either a larger soil textural variability or a drier

soil.  The magnitude and direction of the deviations are independent of whether the higher Fy
2

is due to large negative H or due to high Ff
2 (Figure 8.9c,d).  Recall that for D=1, the variance

of the RFVs theoretically  decreases to 0 at H=-1000 cm.

Dependence on ' and the vertical correlation scale.  The average sample velocity

variance follows a similar stochastic function as the theoretical curve but decreases not as

quickly  with increasing '8fz  as predicted by 1st order analysis (Figure 8.10c,d).

Dependence on aspect ratio and grid discretization.  The velocity variance decreases

with increasing aspect ratio, just as the mean vertical velocity decreases.  At Ff
2=1, the influence

of the horizontal correlation scale on the accuracy of the analytical solution is negligible.  Grid

discretization has no significant impact on the solution (Figure 8.11c,d).

8.8 Stochastic Analysis of the Cross-Covariance Functions

Cross-covariances are of interest for various reasons.  First, many analytical stochastic

models of unsaturated or general porous media flow and transport rely on first-order analytical

formulations of the cross-covariances (e.g. Dagan, 1984, 1987;  Yeh et al., 1985a,b;  Mantoglou

et al., 1987a,b;  Rubin, 1990;  Cvetkovic et al., 1992;  Russo, 1993a,b).  Second, the cross-

covariance is  necessary for the  implementation of conditional simulation, which will be
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described in chapter 10.  The cross-covariances of common interest are Cfh, Cf.vx, and Cf.vz.

Figure 8.17 shows an anisotropic example (#31) of single sample fields (not the average

covariance field!) of each of those cross-covariances.  The cross-covariances have features,

which are only partially reflected in their respective horizontal and vertical cross-sections.  By

inspection of Figure 8.17 it can be seen that the horizontal and vertical cross-sections of Cf.vx and

Ch.vx, for example, would have little information content if taken horizontally or vertically

through the origin.  Unlike the covariance fields, the cross-covariances are neither symmetric

with respect to the origin, nor symmetric with respect to the major coordinate axes.  The

complex structure of the cross-covariance functions will make it difficult to define such cross-

covariances from field measurements, unless a large number of samples are taken throughout

the area of interest.

Of practical interest is the fact that all cross-covariances except Cf.vx and Ch.vx are  much

stronger in the vertical direction than in the horizontal direction.  Hence the information content

of one variable with respect to another variable is predominant within the same vertical region

but bears less predictive capacity with respect to other variables in the same horizontal region.

Another important feature to be noticed is the non-zero lag-distance at which the highest

absolute cross-correlation is reached.  Also, the correlation can be either negative or positive.

For example, head values have a positive correlation to f values that are approximately 38f

further upward and a strong negative correlation to f values that are approximately 18f

downward from the location of the head measurement.  There is comparatively small cross-

correlation into the horizontal direction.  The cross-correlation between f and h at the same

location is only about half of the strongest cross-correlation between f and h at the optimal

distance.  The knowledge of the particular structure of the cross-covariance function is helpful

in the design of monitoring networks, in particular if conclusions on the state of one RFV are

drawn from the state of another RFV (see chapter 10).

The relatively large differences between numerical and analytical solutions for the cross-

covariances of the two least variable isotropic soils (approximately 10% to 20%, see Figure 8.6)
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are due to a simplification in the computation of the numerical sample cross-covariance.  The

RFVs f and a are element properties while the RFVs h,vx, and vz are node properties.  Since y

depends on both nodal and elemental properties (h,f, and a), nodal properties must be

extrapolated to the element or vice versa.  For the sampling procedure here, the head values hi
k

of the four nodes i, i=1...4, around an element k are averaged, and y is obtained as elemental

property of f, a, and the average head h- k in a particular element.  Averaging the head values

introduces a small reduction in the variance of the unsaturated hydraulic conductivity.  However,

since the head values have a strong spatial correlation, the variance reduction can be neglected.

In the sampling process for the sample cross-covariance (8-9) it is assumed - for simplicity - that

the location of an element is identical to the location of the lower left node of that element. The

error in the cross-covariance fields relating nodal with elemental properties stems from the

discrepancy between the assumed identity of element and node location.

Note that the correlation Daf has a significant impact on the cross-covariances of f, h, and

vz:  In the correlated soils the vertical cross-covariance structure of Cfh and Cf.vz inverts itself at

Hmin=-1/.', such that in dry soils Cfh has a minimum at negative lag distances and a maximum

at positive (upward) lag distances.  The cross-correlation between f and the (negative,

downward) vertical velocity becomes positive at lower head pressure, because under dry

conditions soils with high saturated hydraulic conductivity and coarse texture (large ")  are

assumed much less permeable than soils with low saturated hydraulic conductivity and fine

texture (low ").  In the uncorrelated soils the correlation between f and h and f and vz weakens

as the soil dries out, which can be seen by comparing, for example, the cross-covariance Cfh for

the correlated soil at -2000 cm (#24) and the uncorrelated, anisotropic soil at -1000 cm (#15).

Both have approximately the same absolute maximum of 30 cm, although the head variance in

the uncorrelated soil is almost twice as large as in the correlated soil (Figure 8.18).
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8.9 Summary and Conclusions

For the first time, intensive Monte Carlo simulations of unsaturated, steady-state gravity

flow have been implemented for a large range of different soils.  The Monte Carlo simulations

take advantage of the ASIGNing technique introduced in chapter 7, which combines the

efficiency of spectral perturbation analysis with the flexibility and accuracy of finite element

modeling.  It allows for the fast simulation of steady-state head and flux in two-dimensional

vertical soils.   It is applicable to a great variety of  different soils and is  therefore well-suited

for the stochastic simulation of unsaturated flow at actual field sites.  The approach is here used

for a stochastic  analysis of the unsaturated hydraulic conductivity,  the soil water tension, and

the soil water flux.   The simulations are all implemented with 1000 realizations on a finite

element domain of 64*64 rectangular elements.  To avoid aliasing effects in the fast Fourier

transform of the random  field and initial guess generator,  the size of the initial random field is

at least 10 by 10 correlation scales 8f and in most cases exceeds 20 by 20 8f as recommended

by Gutjahr et al. (1989).  The large amount of realizations for each Monte Carlo simulation

results in a very small variability of the sample moments, which allows for both a numerical

model  validation and an  evaluation of first  order analytical solutions  that were introduced

almost a decade ago (Yeh et al., 1985a,b,  chapter 4), but have never been rigorously tested for

their validity  in mildly and  strongly heterogeneous soils.   By comparing the  spatial variability

of the local sample mean and variance with the expected variability of the sample moments it

was shown that the Monte Carlo simulations indeed converge and that the theoretical variability

(8-3) and (8-7) of the sample mean and sample variance provide good estimates of the actual

sample error. While the analysis here is limited to the case of exponential input covariance

functions, the numerical and analytical methods introduced in this work are both applicable to

arbitrary input covariance functions and arbitrary correlation structures between logKs and log".

In many field situations, these covariance and cross-covariance functions are obtained from

geostatistical analysis (Isaaks and Srivastava, 1990).  Both the analytical and numerical approach
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can in principle also be used to analyze flow in unsaturated soils of multidirectional flow with

arbitrary, spatially constant mean head gradients (see also Yeh et al., 1985b).

Beyond the analytical solutions of chapter 4, the Monte Carlo model introduced in this

chapter provides not only more accuracy, but mainly the flexibility offered by the finite element

model with respect to boundary conditions and the particular probability distributions of the

input parameters.  Moreover, the combination of spectral analysis and numerical model

(ASIGNing) makes it possible to simulate quasi-infinite domains or semi-infinite domains (e.g.

with random head vertical boundaries, flux boundary at the top and water table at the bottom).

The analysis has shown that even for very heterogeneous flow fields (large Fy
2=3.2) the use of

the initial first order perturbation solution as random head boundary adversely affects the results

within no more than one or two correlation scales from the boundaries, which is similar to the

effect of using constant head or constant flux boundaries.  In mildly to moderately heterogeneous

flux fields (Fy
2#1), the use of random head boundaries obtained by first order analysis is less

biased than the use of constant head or flux boundary conditions, if deterministic boundary

conditions are not truly justified.  Mixed deterministic/random boundaries can also be

introduced by conditioning as demonstrated in chapter 10.  Arbitrary boundaries could also be

specified including non-stationary boundary conditions (e.g. above a water table).

The analytical solutions  derived in chapter 4 for the mean and variances of the

dependent RFVs y, h, and v are found to be - for all practical purposes - very similar to the

numerical solutions if the resulting variance of y is less than 1.0. (mildly variable flow).   The

two-dimensional covariance and cross-covariance functions are also in good agreement with

numerically sampled models.  For Fy
2$1 (moderately to strongly variable flow) the analysis of

chapter 4 provides  some general insights,  but the actual,  fully nonlinear (numerical Monte

Carlo) solutions differ in parts very significantly.  The most important findings of the stochastic

analysis of the dependent  RFVs and the comparison with the analytical solutions of chapter 4

are summarized here:

The first and second moments of y are very robust with respect to first order
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perturbation analysis.  Even for very heterogeneous flow, the differences between Monte Carlo

and perturbation analysis were less than 16%.  The moments of the unsaturated head are

generally also well estimated by the first order analysis.  If Fy
2>1 i.e., if a soil is either strongly

variable in the saturated hydraulic conductivity and in the soil pore parameter " or if it is a dry

soil, the variance of the head is significantly overestimated by the perturbation analysis (up to

30 %).  The head correlation function is in very good agreement with the numerically obtained

correlation field throughout the simulations.  At large lag-distances, the sample Dhh in the Monte

Carlo simulation is slightly higher than predicted, possibly because of boundary effects in the

numerical simulation.  The sample pdfs of h and y are always found to be Gaussian, except for

very high F"
2, where y showed a small but notable skewness.

The probability distributions of the two velocity components are skewed.  The vertical

velocity is best described by a lognormal pdf.  At very high Fy
2, however, the sample pdf

(histogram) of vz extends beyond zero velocity and shows that a significant number of nodes

with upward velocities exists.  Such a pdf cannot be modeled with the lognormal function.  The

pdf of vx is symmetric and has an exponential decay as |vx| increases.  However, it is

differentiable for vx60 as shown by plotting the pdf of log|vx|.  Since the first order perturbation

analysis assumes normal RFVs, it is generally much less accurate in predicting the flux

(velocity) than in predicting the head and the unsaturated hydraulic conductivity at equal

variability of y.  Only the decrease in mean vertical velocity is well predicted by using the mixed

order effective hydraulic conductivity analysis of Yeh et al. (1985b).

The Monte Carlo sample correlation fields and the analytically determined correlation

functions for  the velocity are in good qualitative agreement for all the tested soils. The

covariance function of the  horizontal velocity is symmetric with  respect to the origin, but has

its major axes diagonal to the major axes of anisotropy.  The vertical velocity covariance is

strongly anisotropic with a larger vertical than horizontal correlation scale, even if the

underlying hydraulic soil properties are isotropic.  The covariance functions of the two velocity

components reflect the peculiar flow structure in heterogeneous soils, which was shown to take
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place in a preferential or channel type flow pattern.  Even though the underlying random

structure of the soil is statistically homogeneous, most of the moisture mass is transported

through only a small fraction of the soil.  This is in good agreement with field findings (Glass

et al., 1988) and the numerical analyses of flow in single fractures with high variability in their

conductivity (Moreno et al., 1989).

Similar second order moments for h, y, vx, and vz are found for wet, texturally

heterogeneous soils and dry, texturally rather homogeneous soils with an equal degree of

unsaturated logK heterogeneity.  The similarity does not extend to the cross-covariances, which

depend not only on the mean head, but also on the correlation between f and a.  For Daf=0 the

cross-correlation between f and h, and between f and vz weakens with increasing soil-water

tension. If D=1, the unsaturated hydraulic conductivity parameters are completely determined

by h and f.  Consequently a strong correlation not only between f and h, but also between f and

vz exists even in dry soils.  The use of tension measurements for the conditional simulation of

f and a random fields is discussed in chapter 10.

The grid-discretization criteria developed in chapter 6 have been proven to provide

accurate solutions not only in the context of single large simulations, but also for Monte Carlo

simulations with a large number of realizations.  A fairly coarse vertical discretization of 10 cm

has been shown to provide results of accuracy equal to that of a  fine discretization (2.5 cm).

In conclusion this study has shown both the applicability and limitations of the first

order perturbation solutions developed in chapter 4 for two-dimensional heterogeneous soils

with lognormally distributed ".  ASIGNing provides a flexible tool to implement Monte Carlo

simulations efficiently on today's available workstations.
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Input parameters for the various hypothetical soil sites:  Ff
2: variance of f=logKs, Fa

2:
variance of a = log", Daf: correlation coefficient between f and a, ': geometric mean
of ", )x: horizontal discretization of finite elements, )z: vertical discretization of
finite elements, 8fx: horizontal correlation length of f, 8fz: vertical correlation length of
f.

name Ff
2 Fa

2 Daf ' H )x )z 8fx 8fz

#3 1.0 0.01 0 0.01 -150 10 10 50 50

#2 0.01 10-4

#4 1

#6 -1000

#8 0.12

#9 4.0 0.04

#10 1 -3000

#11 1 300

#12 1 30 300

#13 20 200 30

#15 -1000 30 300

#19 2.5 2.5 12.5 12.5

#20 2.5 12.5

#21 1 -3000 30 300

#22 4.0 0.04 30 300

#23 1 -3000 20 200 30

#24 1 -2000 30 300

#25 4.0 0.04 20 200 30

#26 0.64

#27 20 0.09 1 10-4 -1.8E5 30 300

#28 2.25 0.04 30 300

#29 30 300

#30 0.1 -100

#31 15 150

Table 8.1
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Comparison of the numerical and first order analytical stochastic solutions for the
mean and variance of the dependent RFVs head h, unsaturated hydraulic conductivity
y, horizontal velocity vx, and vertical velocity vz.  #2, #8, and #3 are three different
Monte Carlo simulations with Ff

2 = 0.01, 0.1, and 1.0, respectively.  All other
parameters are identical to base case #3 (Table 8.1).

#2
numerical  - 

analytical

#8
numerical  - 

analytical

#3
numerical - 
analytical

h:
mean -150.1     -150.0 -150.4    -150.0 -150.9     -150.0

variance 11.2      10.6 157      150 1079     1060

y:
mean -1.499     -1.500 -1.503     -1.500 -1.498    -1.500

variance 8.53E-2      8.90E-2 .121      .126 .858     .887

vx:
mean -3.18E-5     0.00000 -1.03E-4     0.00000 -4.35E-4     0.00000

variance 5.49E-5     5.49E-5 8.03E-4     7.78E-4 7.23E-3     5.49E-3

vz:
mean -.2232     -.2231 -.2230     -.2231 -.2293     -.2231

variance 1.71E-4     1.76E-4 2.44E-3     2.50E-3 1.93E-2     1.76E-2

Table 8.2
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Figure 8.1: Location of the sampling points for which local covariance and cross-

covariance fields are obtained.  The local (cross-)covariance fields are

computed in a 31 by 31 window around each sample point.  The center point

has the entire field as window.
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Figure 8.2: Flow chart of the Monte Carlo simulation.
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Figure 8.5: Analytical ensemble covariance fields (left) and Monte Carlo sample

covariance fields (right) around the center-point of the simulation domain in an

anisotropic soil site (#31: 8x = 150 cm, F2
1 = 1, H = -150 cm ).
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Figure 8.6: Cross-sections of the correlation functions D and cross-covariance functions C

for the #8 soil site.  Horizontal and vertical first order analytical functions are

indicated by dashed and solid lines, respectively.  Horizontal and vertical MC

sample functions are noted with hollow and solid symbols, respectively.

Circles are average sample functions, triangles are from the center-point

correlation and cross-covariance samples (see text).
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Figure 8.8: Dimensionless variances of the dependent RFVs as a function of the variance

of the RFV f (=logKs).
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F i

gure 8.9: Dimensionless variances of the dependent RFVs as a function of the mean head.
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Figure 8.10: Dimensionless variances of the dependent RFVs as a function of '8TZ, where

' is the geometric mean of " and 8TZ is the vertical correlation scale of f.
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Figure 8.11: Dimensionless variances of the dependent RFVs as a function of the horizontal

correlation scale of f.  The vertical correlation scale of f is 50 cm.
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Figure 8.12: Single solution for vx (left) and vz (right) from a random field realization of f

and  " for the isotropic base soil site (#3).

Figure 8.13: Histogram of vz at the isotropic base soil site (#3) on an arithmetic scale (left)

and on an absolute logarithmic scale (right).
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Figure 8.14: Influence of the first order perturbation head boundaries on the horizontal (top)

and vertical (bottom) velocity variance for the isotropic base soil (#3, Fig.

8.14a,b), an anisotropic soil (#29, Fig. 8.14c,d), and an anisotropic high f-

variance soil (#22, Fig. 8.14e,f).  The boundary effect is indicated by the

(white) high velocity variance areas near the boundary.  Darker shades indicate

lower variance.
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Figure 8.15: Histograms of the horizontal velocity at Ff2 = 0.01 (a).  Histograms for the

vertical velocity are given for Ff2 = 0.01 (b) and 0.1 (c).  The latter histograms

are also plotted both on a logarithmic scale (Fig. 8.15d,e).
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Figure 8.17: Anisotropic variation (#31: 8x = 150 cm) of base soil site.  First order analytical

ensemble cross-covariance fields (left) and numerical sample cross-covariance

fields (right) for cross-covariances between f at the center-point and h, vx, and

vz in the entire domain.  Axes labels are lag distances in [cm].
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