Plant collapse caused by Fusarium oxysporum

Oleg
Daugovish
Steve Koike
Husein Ajwa
Doug Shaw
Kirk Larson

Common soilborne fungus

Most strains are not pathogenic

Common soilborne fungus

Most strains are not pathogenic

Many host-specific pathogens

Tomato Melon Cotton Lettuce Celery

Host-specific pathogen on strawberries

Monterey County

Ventura County

Vascular pathogen

Causes wilting and plant collapse

-actors influencing severity of Fusarium wilt

Inoculum level in soil

Environmental conditions

Cultivar susceptibility

Preplant soil fumigation

Inadequate exposure to fumigant

Mortality is not evenly distributed across beds

Effect of bed location on plant mortality

Inoculum buried in beds prior to fumigation

Effect of location on fumigant efficacy

Location in bed

Pic 60 followed by metam sodium

Consider more than two drip lines

Does soil pH affect severity of disease?

Elevating pH to 7.0 reduced severity of Fusarium wilt of tomato

Test effect of pH on growth of Fusarium oxysporum

Test effect of pH on growth of Fusarium oxysporum

Growth medium adjusted to

pH 5

pH 6

pH 7

PH 8

Effect of pH on growth of Fusarium oxysporum

In soil fungi compete with bacteria

Acidic soil tends to favor fungi over bacteria

Effect of soil pH on disease severity

Inoculum density = 500 Colony-forming units per gram

Effect of soil pH on disease severity

Inoculum density = 5000 Colony-forming units per gram

Effect of soil pH on disease severity

Inoculum density = 50,000 Colony-forming units per gram

Varietal differences in susceptibility

Inoculated

Control

Strawberry breeding improves genetic resistance to Verticillium wilt

by Douglas V. Shaw, Thomas R. Gordon, Kirk D. Larson, W. Douglas Gubler, John Hansen *and* Sharon C. Kirkpatrick

Since 1994, more than 480 genotypes from the UC strawberry breeding program have been screened for resistance to Verticillium dahliae Kleb., an important soil pathogen of strawberry. Genotypes for parents of subsequent generations have been chosen using a multiple-trait strategy that incorporates their Verticillium resistance rating. This selection strategy has increased resistance scores for the parents by 60%, and increased the percentage of moderately resistant genotypes from 35.0% in the

ncrease in resistance scores over time

Fig. 1. Changes in the mean *Verticillium* resistance score (1 = severely diseased, and 5 = no symptoms of disease) in genotypes from cross years 1987 (original germplasm) to 2005, ± standard error.

1-5 scale

1 = Susceptible

5 = Resistant

Susceptibility to Fusarium wilt

Camarosa

Ventana

Currently grown UC cultivars

1 - 5 Scale; 1 = Susceptible, 5 = Resistant

Advanced breeding lines

1 - 5 Scale; 1 = Susceptible, 5 = Resistant

Management of Fusarium wilt

Know the history of the field

Maximize distribution of the fumigant

Use resistant cultivars where pathogen is present

Avoid movement of soil from infested fields

Thanks

STRAWBERRY COMMISSION

Lassen Canyon Nursery Inc.

Terry Farms