El Dorado County Grape Day Placerville, CA, June 5, 2008

Conventional and Organic Mite Management in Winegrape Vineyards

Frank Zalom Dept. of Entomology University of California Davis, CA 95616

Willamette Spider Mite

Pacific Mite Injury

Pecific Spider Mite

Pacific Spider Mite *Tetranychus pacificus* McGregor

- Broad host range
- Usually thought of as the greater problem in warm growing areas
 - Eggs spherical and may be laid in webbing
 - Newly hatched larva (6 legs) food spots on dorsum
 - Adults vary in color from slightly amber to greenish or reddish; usually 2 larger spots forward, 2 rear

Pacific Spider Mite *Tetranychus pacificus* McGregor

- Prefers the warmer upper canopy (sunny areas)
- Generally does better during the hotter, drier part of the season
- Produces more webbing and tends to aggregate Damage begins as yellow spots, then dead (necrotic) areas appear on the leaves. High populations can render the leaves nonfunctional with leaf burning and heavy webbing.

Willamette Spider Mite Eotetranychus willamettei (McGregor)

- Cultivated and wild grapes are the main hosts
- Typically the species of concern in the coastal valleys and the Sierra Nevada foothills

Eggs spherical, slightly smaller than Pacific mite, and has a fine papilla (hair) that tapers at the top Newly hatched larva (6 legs) - food spots on sides Adults tend to be yellow with food spots on sides

Willamette Spider Mite Eotetranychus willamettei (McGregor)

- Considered an early-season mite
- Prefers the cooler (shady) parts of the plant
- More dispersed over leaf surfaces

Feeding in mid or late season causes foliage to turn yellowish bronze, and can open canopies. High densities (> 30-50 per leaf) reduces brix. Distribution and abundance of Pacific and Willamette mite seems to be changing (there is increased pest status of Pacific mite in a number of areas):

- Pacific mites present earlier season
- Pacific mites becoming a problem in coastal valleys and into September
- Willamette mites remaining at damaging levels into August

Distribution and abundance of Pacific and Willamette mite seem to be changing. Why?

- pesticide use
- irrigation practices that promote water stress
- large-scale planting of wine varieties in new areas
- changes in insecticide and fungicide use patterns
- What about newer products?

Distribution and abundance of Pacific and Willamette mite seem to be changing. Why?

- pesticide use
- irrigation practices that promote water stress
- large-scale planting of wine varieties in new areas
- changes in insecticide and fungicide use patterns
- What about newer products?

Do they effect six-spotted thrips, lacewings, hemipterans, predaceous beetles, or predator mites?

What about effects on spider mite development?

Acaricides - Status

- Older products had extended preharvest intervals or worker re-entry intervals that often dictated when they had to be applied, leading to preventative use
- Many new products representing an assortment of modes of action are registered
- These new products provide flexibility:

preharvest intervals impacts upon beneficials resistance management

Grape Acaricide IRAC Classification

Product	Active ingredient	Primary target site of action	IRAC #
Agri-Mek	Abamectin	Chloride channel activators (GABA agonist)	6
Onager	Hexythiazox	Unknown mode of action (mite growth inhibitor)	10A
Zeal	Etoxazole	Unknown mode of action (mite growth inhibitor)	10B
Vendex	Fenbutatin oxide	Oxidative phosphorylation inhibitor/uncoupler	12B
Omite	Propargite	Inhibitor of oxidative phosphorylation; iinhibitor of	12C
		ATP synthase	
Kanemite	Acequinocyl	Mitochondrial complex III electron transport	20B
		inhibitor	
Fujimite	Fenpyroximate	Mitochondrial complex I electron transport	21
		inhibitor	
Nexter	Pyridaben	Mitochondrial complex I electron transport	21
		inhibitor	
Envidor	Spirodiclofen	Inhibitor of lipid synthesis	23
Acramite	Bifenazate	Neuronal inhibitor (unknown mode of action)	25
Kelthane	Dicofol	Unknown	unc

Grape Acaricide IRAC Classification

Product	Active ingredient	IRAC #
Neem	Azidirachtin	18B
Organic JMS Stylet Oil	Paraffinic oil	na
M-pede	Potassium salts of fatty acids	na
Ecotrol	Rosemary & peppermint oil	na
GC-Mite	Cottonseed, clove & garlic oil	na

Location and design - 2006

- 96 acre commercial cabernet sauvignon vineyard
- East of Lodi, San Joaquin Co.
- vines drip irrigated
- 4 replicates for each treatment and untreated control
 each treatment replicate was 5 vines in size.
- treatments arranged in a completely randomized design

Special thanks to Steve Quashnick, Wilbur-Ellis Co. and Cliff Ohmart, Lodi-Woodbridge Winegrape Commission

Methods - (both 2006 and 2007)

- applications made with an Echo mister/duster air assist sprayer
- 72 gallons per acre volume conventional treatments
- 150 gallons per acre volume organic treatments
- water buffered to pH 6.5

Sampling -

- 5 leaves from center 3 vines of each plot
- mite-brushed and counted under microscope

Daily maximum and minimum temperatures (°F) during the period of the experiment.

Proportion of Willamette and Pacific spider mites among all spider mites present in untreated control plots

Conventional acaricide study - treatments applied on July 20, 2006, to cabernet sauvignon grape vines

Product	Active ingredient	Rate per acre
Agri-Mek 0.83EC	Abamectin	16 oz
Zeal	Etoxazole	3 oz.
Zeal + Danitol (V-10141)	Etoxazole + Fenpropathrin	18 oz
Fujimite 5EC	Fenpyroximate	2 pts.
Nexter	Pyridaben	10.67 oz.
Envidor 2SC	Spirodiclofen	18 oz.
Acramite 50WS	Bifenazate	1 lb.
Omite 30WP	Propargite	8 lb.
Untreated	Untreated	

Comparison of acaricides applied on July 20 to cabernet sauvignon grape vines

Treatments are significantly (*P*<0.05) different from untreated except for those indicated by 'ns'.

Organic acaricide study - treatments applied on August 19, 2006, to cabernet sauvignon grape vines near Lodi

Treatment	Active ingredient	Rate
Untreated Control	na	na
Organic JMS Stylet Oil	Paraffinic Oil	2% v/v
Organic JMS Stylet Oil	Paraffinic Oil	1% v/v
Ecotrol + Natural Wet	Rosemary Oil + Saponin	0.75 qts + 0.125% v/v
M-pede	Potassium salts of fatty acids	2% v/v
GC-Mite	Cottonseed, Clove and Garlic oil	1% v/v
+ Natural Wet	+ Saponin	+ 0.125% v/v

Comparison of organic acaricides applied on August 19 to cabernet sauvignon grape vines

Location and design - 2007

- commercial merlot vineyard
- south of Pilot Hill, El Dorado Co.
- vines drip irrigated

design

- 4 replicates for each treatment and untreated control
- each treatment replicate was 5 vines in size
- treatments arranged in a randomized complete block

Special thanks to Benjamin Falk of Safari Vineyards and Lynn Wunderlich, UCCE, El Dorado Co.

Daily maximum and minimum temperatures (°F) during the period of the experiment.

Proportion of Willamette and Pacific spider mites among all spider mites present in untreated control plots, 2007.

Pretreatment count (August 8) = 67.4 mites per leaf

Conventional acaricide study - treatments applied on August 9, 2007, to merlot grape vines

Product	Active ingredient	Rate per acre
Agri-mek + Dyne-amic	Abamectin + surfactant	12 oz + 0.25% v/v
Zeal	Etoxazole	3 oz.
Fujimite + summer oil	Fenpyroximate	2 pts. + 1% v/v
Onager	Hexythiazon	19.2 oz.
Envidor	Spirodiclofen	18 oz.
Envidor + Bond	Spirodiclofen + surfactant	18 oz. + 0.25% v/v
Acramite	Bifenazate	1 lb.
Omite	Propargite	8 lb.
Orchex 796	Summer oil	1% v/v
QRD-400	Chenopodium ambrosiodes	4 qts.
Untreated	Untreated	

Comparison of acaricides applied on August 9 to merlot grape vines

Treatments are significantly (P<0.05) different from untreated except for August 22 sampling date, F=1.9719, df = 10,42, P=0.0710.

Organic acaricide study - treatments applied on August 13, 2007, to merlot grape vines

Product	Active ingredient	Rate per acre
Untreated	na	na
Organic JMS Stylet Oil 1%	Parafinic Oil	1% v/v
Organic JMS Stylet Oil 2%	Parafinic Oil	2% v/v
GC-Mite + Natural Wet	Cottonseed, Clove and Garlic Oil + Saponin	1% v/v + 0.125% v/v
Ecotrol + Natural Wet	Rosemary Oil + Saponin	4 pts/acre + 0.125% v/v
Organocide + Natural Wet	Sesame Oil + Saponin	2 oz./gal + 0.125% v/v
M-pede	Potassium salts of fatty acids	2% v/v

Comparison of organic acaricides applied on August 13 to merlot grape vines

Organic Acaricide Comparison, Grapes, El Dorado Co., 2007

Treatments are significantly (P<0.05) different from untreated except for September 5 sampling date and those labeled ns.

Integrating Control of Leafhoppers and Spider Mites with Powdery Mildew Treatments in Organic Vineyards

Dual function products for organic production

Applied in the equivalent of 100 gpa

- Untreated
- Cosavet- micronized sulfur
- JMS Organic Stylet Oil paraffinic oil
 - Sub-plot treatment Stylet oil > Cosavet
- Trilogy- neem oil
- Sporan- rosemary, clove and thyme oil

Methods

- Fantasy seedless organic table grapes
- 15-vine main-plots, 4 replicates
- 5-vine subplots
- Treatments applied every 10-14 days
- Leafhoppers: 12 leaf turns per plot
- Mites: 5 leaf samples per plot
- Powdery Mildew: 20 bunches examined per plot

Leafhopper nymph densities on fantasy seedless, 2006

Leafhopper Nymphs

Willamette Spider Mite densities on fantasy seedless, 2006

Powdery mildew - results

Mean \pm SEM powdery mildew incidence and severity in main plots, 2006

	Powdery Mildew				
	Incidence ^a	Incidence ^a			
Treatment	Mean ± SEM		Mean ± SEM		
Untreated	0.99 ± 0.01	а	0.84 ± 0.05	a	
Cosavet	0.96 ± 0.02	а	0.20 ± 0.02	bc	
Stylet Oil	0.83 ± 0.01	b	0.10 ± 0.00	d	
Sporan	0.99 ± 0.01	a	0.32 ± 0.02	b	
Trilogy	0.94 ± 0.03	ab	0.16 ± 0.01	cd	

^a Proportion of grape bunches with powdery mildew infection

^b Proportion of grape berries with powdery mildew infection

Means followed by the same letter are not significantly different (Tukey's HSD, p < 0.05) Means were arcsine transformed prior to analysis, means presented here are untransformed.

Powdery mildew - results

Mean \pm SEM powdery mildew incidence and severity in stylet oil sub-plots, 2006

	Powdery Mildew		
	Incidence ^a Severity ^b		
Subplot Treatments	Mean ± SEM	Mean ± SEM	
Stylet Oil	0.83 ± 0.01	a 0.10 ± 0.00 a	
Stylet Oil then Cosavet ^c	0.85 ± 0.04	a 0.10 ± 0.01 a	

^a Proportion of grape bunches with powdery mildew infection

^b Proportion of grape berries with powdery mildew infection

[°] Stylet Oil applied 5/17-6/26, Cosavet applied 7/10-8/7

Means followed by the same letter are not significantly different (Tukey's HSD, p < 0.05) Means were arcsine transformed prior to analysis, means presented here are untransformed.

Predaceous Mites on Winegrapes

Galendromus (Metaseiulus) occidentalis (Nesbitt) Neoseiulus (Amblyseius) californicus (McGregor)

also

Neoseiulus fallacis (Garman) - Lodi Typhlodromus pyri Scheuten - north coast Amblyseius andersoni Chant- north coast Typhlodromus caudiglans Schuster- north coast Metaseiulus johnsoni (Mahr)- north coast Euseius stipulatus (Athias-Henriot) - central coast Metaseiulus mcgregori (Chant) - central valley

Predaceous mites on winegrapes

- Adult females are typically narrowly oval
- Most are shiny white to slightly yellow or reddish
- Tend to move much more quickly than do spider mites

- Eggs are elliptical and perhaps 3 to 4 times larger than the spherical eggs of spider mites
- Overwinter primarily under the buds of grapevines as mated, adult females

Sampling and decision rules in "Grape Pest Management"

Pesticide Toxicity Measurements

Acute toxicity - percent mortality LD50 or LC50 - dose response Sublethal effects - fecundity, fertility, immature development Total effects -Persistence -

Behavioral modification -

Predator mite bioassays - analysis

Mortality, fecundity and fertility analyzed by ANOVA with means separated by LSD (p < 0.05)

Total effects of pesticides - E

 $E(\%) = 100\% - (100\% - M) \times R$

Where

M = Abbott corrected mortality (Abbott, 1925)

R = reproduction per treated female (eggs/female x % fertility) / reproduction per untreated female

Predator mite bioassays - direct contact

G. occidentalis survival, fecundity and fertility after treatment of adult females with label rates of five different acaricides.

	Contact spray			
Active ingredient	% Survival	Total eggs/ female	Fertility (% hatch)	E
Control	100 0a	12.4 0.8a	100 0a	-
Acequinocyl	100 0a	9.2 0.6b	96.0 4.9a	28.5
Bifenazate	100 0a	9.4 0.5b	92.3 3.4a	30.2
Etoxazole	98.3 2.2a	9.4 0.7b	0 0b	100
Spiromesifen	98.3 2.2a	8.6 0.5b	96.1 4.0a	34.0
Fenpyroximate	0 0b	0 0c	0 0b	100

Means followed by the same letter are significantly different at p < 0.05 by LSD.

Predator mite bioassays - residues

G. occidentalis survival, fecundity and fertility after treatment of leaves with label rates of five different acaricides.

	Surface residue			
Active ingredient	% Survival	Eggs laid	Fertility	E
Control	98.3 2.2a	11.2 1.0a	100 0a	-
Acequinocyl	93.4 3.0a	9.6 0.5a	92.2 4.9a	25.1
Bifenazate	95.1 2.7a	9.6 0.9a	96.0 4.0a	20.1
Etoxazole	93.4 3.0a	9.0 0.5a	0 0b	100
Spiromesifen	91.7 3.2a	5.0 0.7b	92.6 4.3a	61.7
Fenpyroximate	0 0b	0 0c	0 0b	100

Means followed by the same letter are significantly different at p<0.05 by LSD.

IOBC Classifications - (Sterk et al., 1999)

Leaf surface residues Acequinocyl Bifenazate Spiromesifen Etoxazole Fenpyroximate

Direct contact spray

Acequinocyl Bifenazate Spiromesifen Etoxazole Fenpyroximate

Harmless (class 1) Slightly harmful (class 2) Harmful (class 4) Harmless (class 1) Harmful (class 4)

El Dorado County Grape Day Placerville, CA, June 5, 2008

Conventional and Organic Mite Management in Winegrape Vineyards

Frank Zalom Dept. of Entomology University of California Davis, CA 95616

