Maintaining Microirrigation Systems When Using Well Water

Larry Schwankl UC Cooperative Extension

schwankl@uckac.edu 559-646-6569 website: http://schwankl.uckac.edu

1. Sand and other particulates can be pumped from the well.

Sand and other particulates can be pumped from the well.
 Groundwater quality may result in chemical precipitation.

- 1. Sand and other particulates can be pumped from the well.
- 2. Groundwater quality may result in chemical precipitation.
- 3. Biological clogging issues not as common with groundwater
 - Iron bacteria problems can occur.

1. Sand and other particulates can be pumped from the well.

Emitters:

Passageways for drippers and microsprinklers are very small.

Clogging of Microirrigation Systems

Source: Physical Clogging - Particulates

Clogging of Microirrigation Systems

Source: Physical Clogging - Particulates

Solution: Filtration

Filters:

 Screen, disk, and sand media filters are all available.

 They can all filter to the same degree BUT
 they req. different frequency of cleaning.

Screen Filters:

Soil Particle	Particle Diam (mm)	Mesh Size	Mesh Opening Size (mm)
Very coarse sand	d 1 - 2		
Coarse sand	0.5 - 1	20	0.711
Medium sand	0.25 - 0.5	40	0.420
Fine sand	0.1 - 0.25	100	0.152
Very fine sand	0.05 - 0.10	200	0.074
Silt	0.002 - 0.05	320	0.044
Clay	< 0.002		

Disk Filters

Filtration designated as mesh size.

Disk Filters

Organic matter clogs them quickly.

Sand Media Filters

Media Designation Number		Mean Effective Sand Size		Filtration Quality
	Material	(mm)	(in.)	(mesh)
8	crushed granite	1.50	0.059	100-140
11	crushed granite	0.78	0.031	140-200
16	crushed silica	0.66	0.026	140-200
20	crushed silica	0.46	0.018	200-230
30	crushed silica	0.34	0.013	230-400

Sand and other particulates can be pumped from the well.
 Groundwater quality may result in chemical precipitation.

Clogging of Microirrigation Systems

Source: Chemical Precipitates
Lime (calcium carbonate) and iron are the most common problems.

Chemical Precipitate Clogging of Microirrigation Systems

Water quality levels of concern: • Calcium: pH > 7.5 and 2.0 meq/l (120 ppm) of bicarbonate

Iron: pH > 4.0 and 0.5 ppm iron

Special handling when sampling for iron.

Clogging of Microirrigation Systems

Source: Lime

Solution: pH Control (pH of 6 to 6.5) + filtration

Dealing with Iron Precipitation:

1. Precipitate iron in a pond / reservoir

Dealing with Iron Precipitation:

1. Precipitate iron in a pond / reservoir

2. Chemicals (e.g. phosphonic acid, phosphonate) may keep iron in solution

Maintenance, not clean-up products

- 1. Sand and other particulates can be pumped from the well.
- 2. Groundwater quality may result in chemical precipitation.
- 3. Biological clogging issues not as common with groundwater as with surface waters.
 - Iron bacteria problems can occur.

Iron Bacteria

- Usually growing in the well and moves to the microirrigation system. Slimy and jelly-like. Smells.

Iron Bacteria

- Usually growing in the well and moves to the microirrigation system.
- Need to treat the well and your irrigation system
 - For info. on treating the well: go to web and Google "Iron bacteria in well"

Iron Bacteria

- Usually growing in the well and moves to the microirrigation system.
- Need to treat the well and your irrigation system
 - For info. on treating the well: go to web and Google "Iron bacteria in well"
 - For the microirrigation system:

Clogging of Microirrigation Systems

Source: Biological Sources

Solution: Filtration (usually media filters) + Biocide Biolgical Clogging Acid may deter but not eliminate

biocide

chlorine copper

Chlorine

Sources:

- Liquid sodium hypochlorite.
- Solid calcium hypochlorite.
- **Gas chlorine.**

Chlorine as a Biocide

prevent growth1 - 2 ppmperiodic injection10 - 20super chlorination500 - 1000(reclamation)

Free Chlorine

Test for chlorine using a pool / spa test kit

Chlorine: Injection Rates

- Sodium hypochlorite (liquid)
 - Example: household bleach w/ 5.25% active chorine.

Chlorine injection=System flowxDesired Clx0.006÷Strength ofrate (gal/hr)rate (gpm)Conc. (ppm)Cl soln (%)

Calcium hypochlorite (solid)

- 65-70% available chlorine.
- 12.8 lbs. of calcium hypochlorite added to 100 gallons of water forms a 1% solution.
- Use above formula.

Controlling iron bacteria with chlorine

 Chlorine will cause iron that is in solution in the well water to precipitate <u>quickly</u>.

Controlling iron bacteria with chlorine

- Chlorine will cause iron that is in solution in the well water to precipitate <u>quickly</u>.
 - Be prepared to let this iron precipitate settle out in a reservoir or filter it out (usually with sand media filters).

Questions? Larry Schwankl 559-646-6569 e-mail: schwankl@uckac.edu

For Powerpoint presentation and microirrigation system evaluation handout, go to:

http://schwankl.uckac.edu