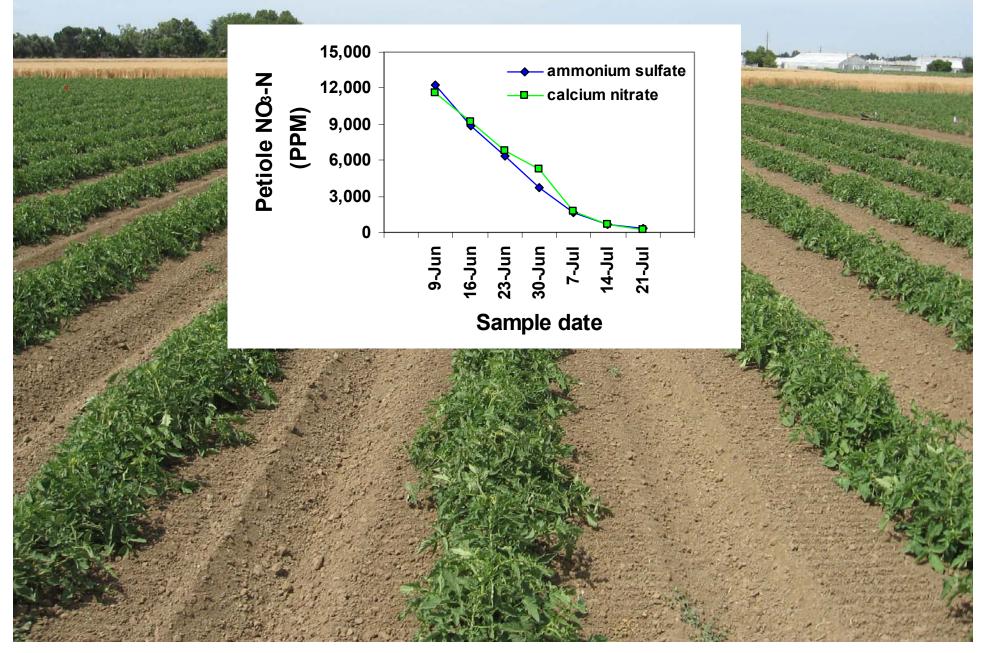
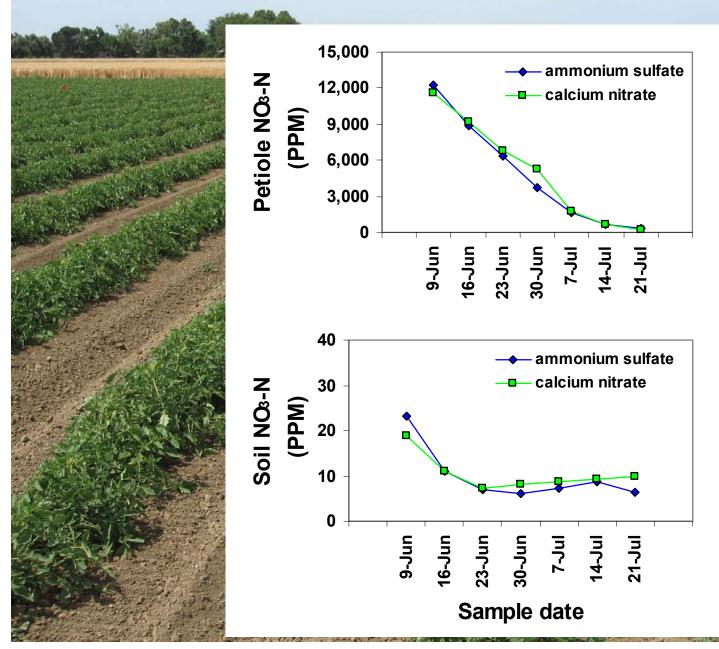


Does the form of N make a difference ?




Average of 1985-86 Miyao / grower sidedress trials :

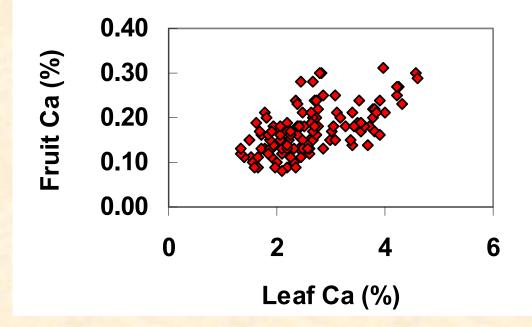
	Early season	Fruit yield	Brix yield
N fertilizer	petiole NO ₃ -N (PPM)	(tons/acre	(tons/acre)
Ammonium sulfate	11,700	44.2	2.12
UN-32	11,900	43.5	2.08
CAN-17	11,700	44.6	2.11
effects significant ?	no	no	no

sense is district to a solution of the sense of the sense of

Eight weekly fertigations, seasonal total of 170 lb N/acre - ammonium sulfate (21-0-0) - calcium nitrate (15.5-0-0-19 Ca)

SHULL MEST

の言語を		Fruit yield	Soluble solids
	N form	(tons/acre)	^{(o} brix)
	ammonium sulfate	46	5.5
	calcium nitrate	47	5.4



N form	Fruit yield (tons/acre)	Soluble solids ^{(o} brix)	Fruit calcium (% of dry wt)
ammonium sulfate	46	5.5	0.09
calcium nitrate	47	5.4	0.09

210 lb Ca / acre was applied with calcium nitrate - why no difference in fruit Ca ?


210 lb Ca / acre was applied with calcium nitrate - why no difference in fruit Ca ?

Processing tomato fruit quality survey :

210 lb Ca / acre was applied with calcium nitrate - why no difference in fruit Ca ?

Processing tomato fruit quality survey :

Ca moves in transpirational flow in xylem, so leaf Ca is high
 surface wax on fruit limits transpiration, limiting Ca in xylem flow; Ca does not move in phloem

Does the form of K make a difference ?

K chloride
K sulfate
K thiosulfate

Does the form of K make a difference ?

✓ K chloride

- ✓ K sulfate
- ✓ K thiosulfate

To what degree is chloride toxic?

Tomato is reasonably salinity tolerant, and chloride tolerant

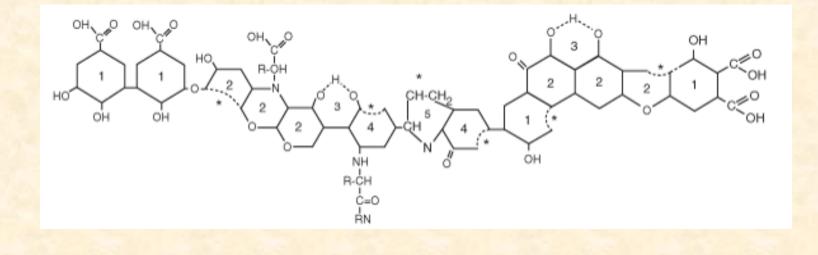
- no detrimental effects < 175 PPM CI in soil solution
- 200 lb K₂O/acre from KCI contains ≈ 35 PPM CI averaged over a season's irrigation

Does the form of K make a difference ?

✓ K chloride

- ✓ K sulfate
- ✓ K thiosulfate

To what degree is chloride toxic?


Tomato is reasonably salinity tolerant, and chloride tolerant

- no detrimental effects < 5 meq/liter (175 PPM CI)
- 200 lb K₂O/acre from KCI contains < 35 PPM CI averaged over a season's irrigation

Are there beneficial effects of sulfate or thiosulfate ions? - sulfur availability is limited only in very low organic matter soil, and low salt irrigation water - thiosulfate ion acidifies soil

Does humic acid improve fertilizer performance ?

What has been proven :

In hydroponic studies, humic / fulvic acids can

- increase plant growth
- increase nutrient uptake

What has been proven :

In hydroponic studies, humic / fulvic acids can

- increase plant growth
- increase nutrient uptake

Are commercial humic products effective in field soils ? Replicated field data from western states is very limited - slight benefit in potatoes (University of Idaho) - no benefit in onions (Oregon State University)

2007-09 UCD trials :

Products tested :
Actagro Humic acid
Actagro Liquid humus
Organo Liquid Hume
Quantum-H
ESP-50

Does humic acid stimulate microbial activity in field soils ?

Two field soils wetted with a solution of humic acid and 10-34-0

 all products at 2 lb active ingredient/acre
 Incubated in sealed jars for 7 days
 CO₂ released by microbial respiration measured

Does humic acid stimulate microbial activity in field soils ?

	mg of carbon mineralized			
	Soil with 0.8% organic matter	Soil with 2.5% organic matter		
P + Humics	5.9	11.0		
P fertilizer alone	5.5	11.2		
Humic effects significant ?	yes	no		

Does humic acid affect the microbial community in field soils ?

	Phospholipid fatty acids increased ?			
	Soil with 0.8% organic matter	Soil with 2.5% organic matter		
fungi	yes	no		
bacteria	yes	no		
actinomycetes	yes	no		

Does humic acid improve fertilizer efficiency ?

an and then a state	Plant dry weight (g)			
	Soil 1	Soil 2	Soil 3	Soil 4
No P or Humic	0.21	0.50	0.79	1.06
Humic only	0.26	0.53	0.89	1.21
Humic effects significant ?	no	no	no	no
Ponly	2.08	1.89	2.69	2.74
Humic + P	1.77	1.70	3.16	2.88
Humic effects significant ?	no	no	yes	no

2008-09 Humic acid field trials

Pretransplant banding of 10-34-0 with / without humic acids
 Humic rates of 1 and 3 lb active ingredient / acre
 Five 100' reps per treatment

Early season sampling :

Whole plant sacrifice to evaluate growth

Leaf samples to evaluate nutrient uptake

2008:

	107 10 1007	%	in plant	t
	Plant dry wt (g)	Ν	Р	K
Fertilizer + Humics @ I lb/acre	88	4.6	0.42	3.4
Fertilizer + Humics @ 3 lb/acre	87	4.7	0.42	3.5
Fertilizer alone	87	4.6	0.39	3.4
Humic effects significant ?	no	no	no	no

Sampling 6 weeks after transplanting

2009:

	107 10 1007	%	6 in leaf	
	Plant dry wt (g)	Ν	Р	K
Fertilizer + Humics @ I lb/acre	21	5.6	0.63	2.4
Fertilizer + Humics @ 3 lb/acre	22	5.6	0.64	2.4
Fertilizer alone	22	5.7	0.68	2.4
Humic effects significant ?	no	no	no	no

Sampling 4 weeks after transplanting

How about micronutrients ?

 in neither year did humic acid consistently increase leaf micronutrient concentration

At harvest :

	2008		2009	
	Mkt yield Solids		Mkt yield	Solids
	(tons/acre)	(° brix)	(tons/acre)	(° brix)
Fertilizer + Humics @ I lb/acre	50.9	5.5	42.2	5.5
Fertilizer + Humics @ 3 lb/acre	51.8	5.5	45.6	5.5
Fertilizer alone	52.7	5.6	44.2	5.6
Humic effects significant ?	no	no	no	no

Why such disappointing results ?

 Hydroponic studies suggest that HA concentration of 50-100 PPM necessary for optimum response; typical field application rates are too low

 Dissolved organic matter in soil can perform the same functions as HA, thereby masking potential HA effects

