Selecting Barbera Grapevine Clones to Improve Yield and Quality

Matthew Fidelibus and L. Peter Christensen Department of Viticulture and Enology University of California, Davis

Barbera clonal research in California

- What are grapevine clones?
- How can clonal selection benefit growers?
- What Barbera clones are available in California?
- Which clones have been tested, and how do they differ?

Species, cultivars, and clones

- California's wine industry based on a single species of grape, *Vitis vinifera* L.
- Most wines made from traditional (old) varieties of *V. vinifera*, such as Barbera
- Old varieties can accumulate many 'clones' due to mistaken identity, mutation, or both
- Variation among clones may be exploited to improve grapevine yield and quality

What is a grapevine clone?

- A population of vines propagated asexually (e.g., by cuttings) from a single mother vine.
- Virtually all propagated grapevines are technically 'clones'
- Of particular interest are clones or 'selections' having distinctive beneficial characteristics

How can clonal selection research benefit growers?

- Nurseries offer many different clones of a given cultivar
- These may differ with respect to yield, yield components, fruit composition, and susceptibility to pests and diseases
- The performance of a given clone may depend on the climatic region where it is grown

Barbera in California

- Important wine grape in Italy, particularly the Piedmont region
- Good qualities include high yields and high acidity
- Now planted around the world
- 7,500 acres in California; 90% in SJV
- Mostly a blending variety in SJV, increasingly popular varietal wines

Barbera clones

- 7 registered Barbera clones in CA (FPS 2-8)
- FPS 1 was only registered selection from 70s through 90s and is the most widely planted in SJV
- In 1990s, FPS 2 became available, but FPS eliminated 1 due to leafroll, so 2 became the only registered selection

Barbera clones

- Work by LPC showed that FPS 2 had larger berries, was later ripening, and more susceptible to sour rot, than FPS 1
- A clean source of FPS 1 was identified and reintroduced as FPS 6
- Clones 3,4, and 5 (Torino clones) also became available
- FPS 3 and 5 were two cuttings from the same vine

Barbera clones

Clone	Source
2	Rauscedo, Italy
3	Torino, Italy, CVT 171
4	Torino, Italy, CVT 84
5	Torino, Italy, CVT 171
6	Marshall (32 V7), previously Clone 1

 Evaluate the performance of five Barbera selections in the San Joaquin Valley

Materials and methods

- Barbera grapevine cuttings planted in 2000
- Bilateral cordons, spur pruned, vertical two-wire trellis,7.5' x 10' spacing
- Ten single-vine replicates, RCBD
- Harvested annually, 2003-2006
- Within a year, all clones harvested on the same day

Cluster characteristics

Clone	Clusters / vine	Cluster wt.	Yield / vine
		(kg)	
2	73 c	0.31 ab	21.7 b
3	80 a	0.32 a	25.4 a
4	74 bc	0.29 b	21.5 b
5	79 ab	0.31 a	24.4 a
6	74 bc	0.26 c	18.6 c

Berry characteristics

Clone	Berries / cluster	Berry wt
		(g)
2	105 c	3.06 a
3	127 a	2.59 b
4	115 b	2.57 b
5	122 ab	2.61 b
6	108 c	2.47 c

Fruit composition

Clone	Brix	рН	TA
			(g/L)
2	23.4 b	3.43 c	0.845 a
3	23.5 b	3.44 bc	0.828 a
4	23.9 ab	3.48 b	0.778 b
5	23.5 b	3.43 c	0.817 a
6	24.3 a	3.55 a	0.744 c

Sour rot incidence

Clone	Sour rot incidence
	(%)
2	40 a
3	29 b
4	25 b
5	26 b
6	19 c

Summary

- FPS 2: moderate yields, large berries, late maturing, most susceptible to sour rot. Clearly the worst choice.
- FPS 3 and 5: Highest yields, biggest clusters, medium sized berries, late maturing, excessive (but not the worst) sour rot, performed identically. Use where high yields are desired and sour rot not a problem.

Summary

- FPS 4: moderate yields, moderate numbers of berries/cluster and berry size, good fruit composition, excessive (but not the worst) sour rot. Probably the best "Torino" clone.
- FPS 6: lowest yields (15-25% less than others), few and small berries, much less susceptible to rot than others. Could be the best choice.

Acknowledgements

 Support of American Vineyard Foundation
Help from Kimberley Cathline, Jorge Aguilar Osorio, Don Katayama, Karin Kawagoe, and many others.