Inception, progression, and compositional consequences of the sugar accumulation disorder (SAD)

Mark Krasnow

Mark Matthews Ken Shackel

Sugar Accumulation Disorder (SAD) a.k.a. 'Berry shrivel'

- Impeded sugar accumulation
- Healthy appearing rachis
- Poor color development (in red varieties)
- Premature berry desiccation

BSN SAD

BS

BSN

2

BSN SAD

BS

BSN

Dead rachis, sweet (up to 33.5° Brix), raisin-like flavor

Live rachis, sour (rarely more than 23° Brix), poor coloration

SAD

BSN

Cabernet Sauvignon and Sauvignon blanc clusters displaying symptoms of SAD.

SAD

Grapes displaying SAD have been seen:

- Throughout California
- In Oregon and Eastern Washington
- In Europe (Austria)

Sample	Sample Date	condition	Berry weight (g) ± SD	Brix ± SD	pH ± SD
Round Pond (Rutherford)	8/14/07	SAD	0.84 ± 0.09	11.2 ± 0.3	3.1 ± 0.07
Cabernet S.		Control	1.08 ± 0.04	17.4 ± 0.6	3.3 ± 0.04
Juliana (Napa)	8/23/07	SAD	0.8 ± 0.03	15 ± 1.3	3.1 ± 0.04
Sau∨. Blanc	8	Control	1.2 ± 0.04	g)Brix \pm SDpH \pm 11.2 \pm 0.33.1 \pm 17.4 \pm 0.63.3 \pm 17.4 \pm 0.63.3 \pm 15 \pm 1.33.1 \pm 26.2 \pm 1.23.6 \pm 13.2 \pm 2.13.3 \pm 25.8 \pm 0.93.6 \pm 19.3 \pm 0.93.3 \pm 23.2 \pm 3.23.4 \pm 15.5 \pm 2.03.2 \pm 22.8 \pm .83.5 \pm 313.8 \pm 1.43.4 \pm 22.4 \pm 1.03.7 \pm 15.6 \pm 1.43.4 \pm 22.2 \pm .93.5 \pm 14.8 a3.2022.9 b 3.5 \pm	3.6 ± 0.06
Chimney Rock (Napa)	8/27/07	SAD	1.34 ± 0.15	13.2 ± 2.1	3.3 ± 0.07
Sau∨. Blanc		Control	1.7 ± 0.08 25.8 ± 0.9		3.6 ± 0.09
Oakville Exp. V. (Napa)	9/24/07	SAD	1.00 ± 0.1	19.3 ± 0.9	3.3 ± 0.1
Cabernet S.		Control	1.11 ± 0.03	23.2 ± 3.2	3.4 ± 0.1
Jordan (Sonoma)	10/7/07	SAD	0.73 ± 0.1	15.5 ± 2.0	3.2 ± .06
Cabernet S.		Control	1.06 ± 0.01	Drix ± 0.0 pri ± 0.0 11.2 ± 0.3 3.1 ± 0.0 17.4 ± 0.6 3.3 ± 0.0 15 ± 1.3 3.1 ± 0.0 26.2 ± 1.2 3.6 ± 0.0 13.2 ± 2.1 3.3 ± 0.0 13.2 ± 2.1 3.3 ± 0.0 25.8 ± 0.9 3.6 ± 0.0 19.3 ± 0.9 3.3 ± 0.0 13.2 ± 3.2 3.4 ± 0.0 15.5 ± 2.0 3.2 ± 0.0 12.8 ± 0.8 3.5 ± 0.0 13.8 ± 1.4 3.4 ± 0.0 12.4 ± 1.0 3.7 ± 0.0 12.2 ± 0.9 3.5 ± 0.0 $14.8 a$ 3.260 $22.9 b$ 3.510	3.5 ± .03
Chimney Rock (Napa)	10/16/0	SAD	0.82 ± 0.008	13.8 ± 1.4	3.4 ± .1
Cabernet (mature)	7	Control	1.04 ± 0.05	22.4 ± 1.0	3.7 ± .05
Chimney Rock (Napa)	10/23/0	SAD	0.77 ± 0.03	15.6 ± 1.4	3.4 ± .07
Cabernet (young)	7	Control	0.89 ± 0.07	22.2 ± .9	3.5 ± .03
SAD Average			0.9 a	14.8 a	3.26 a
Control Average			1.15 b	22.9 b	3.51 b

Our work originated at the Oakville Experimental Vineyard

With Cabernet Sauvignon vines that had consistently shown berry shrivel symptoms over several seasons

Some clusters showed shrivel and others did not.

Sampling protocol: pre-symptom expression

Symptom expression

"Healthy" clusters

Shriveled clusters **\V**

Pooling 2-berry samples within/between vines

Normal vine

Pooling 2-berry samples within/between vines

Pooling 2-berry samples within/between vines

Likely to Shrivel vine

Normal vine

Control pool

DAA

DAA

Fluorescein Diacetate cell viability staining in fruit – Ken Shackel

Allows differentiation of living versus dead cells

Living cells

Dead cells

SAD symptom development

• SAD fruit has lower Brix, pH, and anthocyanin concentration than control fruit

SAD clusters stop accumulating sugars weeks before visible symptoms

- Cells die as symptoms become visible
- •Vine phenomenon nonsymptomatic clusters on SAD vines develop similarly to SAD clusters

Is shrivel [SAD] the result of impaired phloem transport?

Stopping sugar import by girdling the cluster should mimic SAD

Girdling experiments to mimic SAD

Girdling was done with a knife above and below the peduncle to stop sugar transport to the berries.

Cabernet Sauvignon

Girdled before veraison. Picture taken 103 DAA (63 DAG)

Not girdled

Yes, girdling mimics SAD with respect to berry growth, sugar accumulation, and color development.

Crop Thinning Experiments

Clusters dropped at set Greenest clusters dropped at veraison

2007 % SAD

Site	Unthinned	Set thinned	Veraison thinned
Stag's Leap	1.0 a	0 a	0.3 a
Sonoma	6.3 a	0.9 a	4.7 a
Rutherford River	3.2 a	6.5 a	6.5 a

2008 % SAD --- same lack of thinning effect

Thinning crop has not diminished incidence of SAD symptoms in remaining fruit.

Schematic of SAD propagation experiment

Jason Benz

2007 Budding Experiments

Chip budding from normal to SAD vines and SAD to normal vines

30 vine sets (15 SAD, 15 healthy) were planted in: Oakville (1773 GDD) Windso Sacramento anta Ros Davis (2069 GDD) Rohnert Park San Francisco Hopland (1937 GDD) San Jose Chowchill Parlier (2469 GDD) McFarland California Bakersfield Arrovo Grand Grover Beach ancaster e Hughes Adelante Badda Apple Valley Palmdale Victorville Santa Clarita Hesperia Chubbuck an Buenaventura Oxnard Simi Valley La Canada Flintridge Big Bear Lake Thousand Oaks Agoura Hils Pesadena Valley Twentynine Palms an Bernardino Riverside Los Angeles Desert Hot Springs Torrance Anabeim Long Beach Huntington Beach Costa Mesa Long Beach Oceanside Carlsbad scondic

Normal propagated vine

SAD propagated vine

Normal source

SAD source

2009 Davis vine harvest data

Sample	Harvest weight (g/vine)	Brix
Normal propagated (n=10)	442 a	25.7 a
SAD propagated (n=11)	372 a	17.6 b

Similar results at all locations in 2010.

Cont	trols:	SAD:	
Sou	rce Brix	Sourc	ce Brix
3A	22.0a	1B	18.8a
4A	21.9a	3B	17.3 b
2A	20.5a	5B	15.7 c
		2B	15.0 c

Clonal propagation: 3 independent wood sources of control and 4 independent wood sources of SAD, all planted at 4 locations (OEV, UCD, KAC, and Hopland). Due to budget limitations, only the OEV and UCD vines now remain. The 2003 budding experiments demonstrated that SAD is transmissable 2007 Budding experiments demonstrated that healthy buds grafted onto SAD vines develop SAD fruit and that SAD is able to spread from grafted buds to affect an entire vine;

And - there are consistent clonal differences

SAD and pathogens The SAD vines at OEV have been tested for the following pathogens by FPS

Leafroll viuruses
Fanleaf virus
Phytoplasmas

- •Tomato ringspot virus
- Grapevine vitivirusesArabis mosaic virus

*Xylella fastidiosa*Rootstock stem lesion associated virus

- Grapevine fleck virus
- Rupestris stem pitting
 associated virus

All tests have yielded negative results, [or both SAD and healthy vines have given positive results]

Sugar accumulation stops prematurely

Sugar accumulation stops prematurely
Anthocyanin accumulation stops about same time as sugar accumulation

Sugar accumulation stops prematurely
Anthocyanin accumulation stops about same time as sugar accumulation
SAD symptoms may arise from impaired phloem flux, like leaf roll virus

Sugar accumulation stops prematurely
Anthocyanin accumulation stops about same time as sugar accumulation
SAD symptoms may arise from impaired phloem flux, like leaf roll virus
SAD is propagate-able & transmissible

 Sugar accumulation stops prematurely Anthocyanin accumulation stops about same time as sugar accumulation •SAD symptoms may arise from impaired phloem flux, like leaf roll virus •SAD is propagate-able & transmissible •SAD at Oakville is a vine phenomenon

 Sugar accumulation stops prematurely Anthocyanin accumulation stops about same time as sugar accumulation SAD symptoms may arise from impaired phloem flux, like leaf roll virus •SAD is propagate-able •SAD at Oakville is a vine phenomenon •SAD may arise from multiple causes, including a pathogen

Acknowledgements

- Ed Weber and Rhonda Smith
- Jason Benz
- Daniel Robledo grafting
- Nate Weis
- Derek Cronk
- Elizabeth Vianna and Doug Fletcher
- Dana Grande and Mark Bailey
- Adib Rowhani
- Valentina Canutti
- Marco LiCalzi
- •Sue Ebeler
- AVF and NCVRG

Different types of SAD?

Location	Year	Condition	Juice pH	Brix	Sugar per berry (g)
Oakville	2005	Normal vines	3.71 a	25.3 a	0.350 a
Oakville	2005	LTS clusters	3.63 a	22.0 b	0.282 b
Oakville	2005	SAD clusters	3.61 a	19.2 c	0.204 c
Sonoma	2008	Normal vines	3.45 a	24.0 a	0.218 a
Sonoma	2008	LTS clusters	3.45 a	23.0 a	0.238 a
Sonoma	2008	SAD clusters	3.27 b	18.2 b	0.127 b

Aroma compound profiling – Sue Ebeler

Headspace solid-phase microextraction-gas chromatography-mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines

Table 5

Volatile compounds identified in skins of Cabernet Sauvignon expressed as µg kg⁻¹ of grape unless otherwise noted.

Grape compounds Retention		ention Calculated I	H1		H2		H3		H4		H5		H6	
1	time (min)	(literature) ^a	Mean ± SD	RSD (%)	Mean ± SD	RSD (%)	Mean ± SD	RSD (%)	Mean ± SD	RSD (%)	Mean ± SD	RSD (%)	Mean \pm SD	RSD (%)
Hexanal	8,33	1087 (1024)	$20.99^{b} \pm 2.14$	10.2	$42.82^{b} \pm 2.84$	6,6	32,44 ^b ± 1,75	5.4	11,87 ^b ± 1,67	14,1	$10.11^{b} \pm 0.72$	7.1	$6782,56 \pm 880,47$	13.0
Isovalerone ^{c, d}	11.72	1178 (1207)	0.37 ± 0.07	7.9	0.68 ± 0.21	30,5	0.55 ± 0.07	13.0	0.63 ± 0.07	11,5	0.65 ± 0.03	3,9	0.49 ± 0.04	7.3
(Z)-2-Hexenal ^{c,d}	12.24	1196 (1207)	$190,96 \pm 13,46$	7.1	227.63 ± 10.44	4,6	172.37 ± 9.30	5.4	144.17 ± 19.70	13.7	129.09 ± 9.42	7,3	100.00 ± 17.48	17.5
4-Methyl-2-heptanone ^{c,d}	13.02	1213 (1206)	0.17 ± 0.01	5.1	0.39 ± 0.04	10,5	0.33 ± 0.01	2.6	0.31 ± 0.04	14.5	0.30 ± 0.03	10,2	0.25 ± 0.03	12,5
(E)-2-Hexenal	13,36	1218 (1212)	$140,66 \pm 12,98$	9.2	182.34 ± 8.90	4,9	113.64 ± 6.82	6.0	60.04 ± 5.96	9,9	46.10 ± 3.84	8,3	17.33 ± 3.36	19.4
3-Octanone ^{c,d}	14.13	1236 (1251)	<lod< td=""><td></td><td><lod< td=""><td></td><td><lod< td=""><td></td><td><lod< td=""><td></td><td>3.63 ± 0.24</td><td>6,7</td><td>0.53 ± 0.04</td><td>7.9</td></lod<></td></lod<></td></lod<></td></lod<>		<lod< td=""><td></td><td><lod< td=""><td></td><td><lod< td=""><td></td><td>3.63 ± 0.24</td><td>6,7</td><td>0.53 ± 0.04</td><td>7.9</td></lod<></td></lod<></td></lod<>		<lod< td=""><td></td><td><lod< td=""><td></td><td>3.63 ± 0.24</td><td>6,7</td><td>0.53 ± 0.04</td><td>7.9</td></lod<></td></lod<>		<lod< td=""><td></td><td>3.63 ± 0.24</td><td>6,7</td><td>0.53 ± 0.04</td><td>7.9</td></lod<>		3.63 ± 0.24	6,7	0.53 ± 0.04	7.9
2-Octanone	17.39	1285 (1283)	<loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>		<loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>		<loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<>		<loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>		<loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<>		<loq< td=""><td></td></loq<>	
1-Hexanol	21.56	1340 (1345)	$745,23 \pm 68,91$	9.2	1090 ± 39.03	3,6	1194.73 ± 45.03	3.8	1065.02 ± 84.71	7.9	1802.15 ± 218.11	12.1	1251.41 ± 265.97	21,2
(E)-3-Hexen-1-old	21.82	1349 (1367)	0.13 ± 0.07	50.7	0.26 ± 0.03	12,6	0.36 ± 0.02	5.9	0.23 ± 0.06	24,6	0.17 ± 0.06	36,8	0.34 ± 0.06	16,6
Nonanal	22.80	1381 (1392)	$3,23 \pm 0.70$	21.6	2.54 ± 0.89	35,1	1.43 ± 0.60	42,4	0.12 ± 0.01	11,5	<lod< td=""><td></td><td><lod< td=""><td></td></lod<></td></lod<>		<lod< td=""><td></td></lod<>	
3-Octanol	23,71	1399 (1394)	<lod< td=""><td></td><td><lod< td=""><td></td><td><lod< td=""><td></td><td><lod< td=""><td></td><td>2.16 ± 0.65</td><td>30,2</td><td>$16,27 \pm 3,18$</td><td>19,6</td></lod<></td></lod<></td></lod<></td></lod<>		<lod< td=""><td></td><td><lod< td=""><td></td><td><lod< td=""><td></td><td>2.16 ± 0.65</td><td>30,2</td><td>$16,27 \pm 3,18$</td><td>19,6</td></lod<></td></lod<></td></lod<>		<lod< td=""><td></td><td><lod< td=""><td></td><td>2.16 ± 0.65</td><td>30,2</td><td>$16,27 \pm 3,18$</td><td>19,6</td></lod<></td></lod<>		<lod< td=""><td></td><td>2.16 ± 0.65</td><td>30,2</td><td>$16,27 \pm 3,18$</td><td>19,6</td></lod<>		2.16 ± 0.65	30,2	$16,27 \pm 3,18$	19,6
(Z)-2-Hexen-1-old	24.41	1441 (1411)	12.33 ± 1.33	10,7	7.18 ± 0.21	3.0	8.01 ± 0.27	3.3	13.04 ± 0.81	6,2	$4,29 \pm 0.33$	7.7	0.20 ± 0.03	16,9
1-Octen-3-ol	26,45	1456(1451)	0.62 ± 0.02	0.3	0.64 ± 0.05	8,3	0.61 ± 0.01	1.7	1.22 ± 0.10	8,3	27.82 ± 1.59	5.7	$16,99 \pm 1.79$	10.6
2-Ethyl-1-hexanol	26.76	1493 (1494)	<loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>		<loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>		<loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<>		<loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>		<loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<>		<loq< td=""><td></td></loq<>	
Dihydroedulan I ^{c,d}	27.30	1529 (1506)	0.40 ± 0.07	16,4	0.38 ± 0.10	25,61	0.25 ± 0.02	7.12	0.34 ± 0.02	5.0	0.31 ± 0.05	16.8	0.26 ± 0.07	26,3
(E)-2-Nonenal	27.74	1537 (1532)	<loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>		<loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>		<loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<>		<loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>		<loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<>		<loq< td=""><td></td></loq<>	
β-Linalool	28,22	1554 (1545)	1.25 ± 0.03	2.7	1.28 ± 0.07	5,5	1.30 ± 0.06	4.8	1.38 ± 0.20	14.1	1.26 ± 0.07	5.2	1.13 ± 0.22	19.7
1-Octanol	28.54	1566 (1565)	0.47 ± 0.02	4.3	0.67 ± 0.05	7.5	0.57 ± 0.02	4.1	0.57 ± 0.12	20,4	0.52 ± 0.02	3,8	0.51 ± 0.09	17.1
(E,Z)-2,6-Nonadienal	28.39	1582 (1576)	0.82 ± 0.03	3.3	0.48 ± 0.06	11.7	0.51 ± 0.03	5.1	0.82 ± 0.12	14,4	0.50 ± 0.05	10,2	0.25 ± 0.08	30,8
1-Nonanol	30,59	1685 (1653)	0.06 ± 0.02	38,8	0.08 ± 0.01	16,0	0.06 ± 0.01	21,6	0.07 ± 0.01	15.6	0.07 ± 0.02	26,1	0.03 ± 0.01	41,8
(Z)-3-Nonen-1-ol ^{c, a}	30.98	1688 (1664)	0.47 ± 0.05	10,9	0.53 ± 0.01	1,3	0.44 ± 0.01	2,9	0.43 ± 0.08	19.0	0.48 ± 0.05	9.7	0.35 ± 0.06	16.0
β-Citronellol ^{c,a}	32.51	1811 (1744)	0.13 ± 0.01	9,3	0.16 ± 0.04	23,4	0.12 ± 0.02	12.7	0.13 ± 0.02	13,5	0.11 ± 0.01	7.6	0.09 ± 0.03	30,9
β-Damascenone	33.07	1830(1841)	0.18 ± 0.10	57,3	0.22 ± 0.03	12,5	0.17 ± 0.08	50.0	0.13 ± 0.07	54,0	$0,30 \pm 0.04$	13,2	0.33 ± 0.22	67.0
Nerol	33,35	1875 (1849)	<loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>		<loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>		<loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<>		<loq< td=""><td></td><td><loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>		<loq< td=""><td></td><td><loq< td=""><td></td></loq<></td></loq<>		<loq< td=""><td></td></loq<>	
Geranyl/nerylacetone ^{c, d}	33,43	1881 (1858)	0.97 ± 0.59	61,2	0.46 ± 0.28	61.2	0.38 ± 0.06	15.2	0.71 ± 0.34	47.4	0.84 ± 0.22	25,7	<lod< td=""><td></td></lod<>	
2-Phenylethanol	34,23	1923 (1939)	$4,36 \pm 0.33$	7.7	5.78 ± 0.62	10,8	$4,95 \pm 0,22$	4.4	$5.16 \pm 1,19$	23.0	4.48 ± 0.20	4.4	5.90 ± 0.30	5,1
β-Ionone	34.60	1955 (1956)	0.33 ± 0.02	5.0	0.33 ± 0.02	6,2	0.33 ± 0.01	4.4	0.34 ± 0.05	14,4	0.32 ± 0.02	5,9	0.27 ± 0.05	19.2

LOQ, Limit of quantitation; LOD, limit of detection.

^a Literature sources: http://www.odour.org.uk, http://www.flavornet.org, Ferhat et al. [44], Jennings and Shibamoto [45].

^b mg kg⁻¹ of grape.

^c Compounds tentatively identified by matching to the NIST MS library spectra and comparison of Kovats' retention indices (I) to literature values.

^d µg equivalents of 2-octanol internal standard per kilogram of grapes.

Canutti et al. 2009

Damascenone content (105 berries) +/- SE

Ionone content (105 berries) +/- SE

β-Damascenone from Napa in 2009

Linalool [and lonone] are increased in SAD fruit

